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Summary 

Transport models are becoming more and more disaggregate to facilitate a realistic 

representation of individuals and their travel patterns. In line with this development, the PhD 

study focuses on facilitating the deployment of traffic assignment models in fully disaggregate 

activity-based model frameworks. In the correct integration, such frameworks allow realistic 

representation of individual-specific household interactions, time-space constraints and 

preference structures. Individual trips can also be evaluated on a detailed address-to-address 

level and aggregation biases are avoided. The study focuses on large-scale applications and 

contributes with methods to actualise the true potential of disaggregate models.  To achieve 

this target, contributions are given to several components of traffic assignment modelling, by 

(i) enabling the utilisation of the increasingly available data sources on individual behaviour in 

the model specification, (ii) proposing a method to use disaggregate Revealed Preference (RP) 

data to estimate utility functions and provide evidence on the value of congestion and the value 

of reliability, (iii) providing a method to account for individual mis-perceptions in the choice 

set generation for complex multi-modal networks, and (iv) addressing the difficulty of choice 

set generation by making available a theoretical framework, and corresponding operational 

solution methods, which consistently distinguishes between used and unused paths. 

 The availability of data is essential in the development and validation of realistic models 

for large-scale applications. Nowadays, modern technology facilitates easy access to RP data 

and allows large-scale surveys. The resulting datasets are, however, usually very large and 

hence data processing is necessary to extract the pieces of information relevant to the analysis 

at hand. Manual processing of the datasets are typically not possible, and it is therefore 

necessary to have methods available which in some automated ways clean and prepare the 

datasets for the desired use. The present study proposes a fully automatic post-processing 

procedure that combines fuzzy logic- and GIS-based methods to process raw individual-based 

GPS data with no additional information required from the respondent. The method categorises 

trips and trip legs and associates the trip legs with the most probable mode of transport used. 

The method was validated through the application to a dataset consisting of raw individual-

based GPS logs collected among 183 respondents living in the Greater Copenhagen area. 

Through the use of a control-questionnaire, the study found that the proposed method (i) 
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identified corresponding trip legs for 82% of the reported trip legs, (ii) avoided classifying non-

trips such as scatter around activities as trip legs, and (iii) identified the correct mode of 

transport for more than 90% of the trip legs. These results are very promising, especially when 

compared to results generated by existing algorithms. The results highlight the potential of the 

method proposed and the possibility to use individual-based GPS units for travel surveys in 

real-life large-scale multi-modal networks. 

 Congestion is known to highly influence the way we act in the transportation network 

(and organise our lives), because of longer travel times, but the reliability of the travel time 

also has a large impact on our travel choices. Consequently, in order to improve the realism of 

transport models, correct understanding and representation of two values that are related to the 

value of time (VoT) are essential: (i) the value of congestion (VoC), as the VoT varies with 

traffic conditions and hence congestion multipliers reflect the complexity of driving conditions 

when more vehicles are present on the road, and (ii) the value of reliability (VoR), as the VoT 

relates to the predictability of travel time and the repeatability of the travel experience. 

Congestion and reliability highly influence each other, but so far only studies based on Stated 

Preference (SP) data considered concurrently congestion and reliability variables. 

 The PhD study contributes to the state-of-the-art by presenting a new approach to 

estimate the VoR and VoC based on RP data. The approach applies a mean-variance model 

that considers congestion and reliability concurrently. The model was applied to GPS data and 

it successfully estimated mixed Path Size Logit models, using a sample of 5,759 observations 

in the peak period and a sample of 7,964 observations in the off-peak period. Results illustrated 

that the value of the different time components (free-flow, congestion, and reliability) and the 

congestion multiplier were significantly higher in the peak period. This seems reasonable 

because of possible higher penalties for being late and, as a consequence, possible higher time 

pressure. Results also showed that the marginal rate of substitution between travel time 

reliability and the total travel time, considering the average congestion level, did not vary 

across time periods and traffic conditions. The study highlights the potential of exploiting the 

growing availability of observations of actual behaviour to obtain estimates of the (monetary) 

value of different travel time components, thereby increasing the behavioural realism of large-

scale models. 
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 The generation of choice sets is a vital component in route choice models. This is, 

however, not a straight-forward task in real-life applications, as: (i) there are almost infinitely 

many alternatives, but large choice sets are computationally demanding or even unfeasible; (ii) 

congestion effects need to be considered; (iii) the choice sets should contain all relevant 

alternatives, including the observed route if one such is available, while leaving out non-

reasonable and redundant routes; and (iv) the attributes of the alternatives should vary enough 

to facilitate consistent parameter estimates if the choice sets are to be used for choice model 

estimation.  

 The PhD study contributes to the state-of-the-art by proposing and validating a 

simulation-based choice set generation method for general networks. The validation used 5,131 

observed route choices collected on the highly complex large-scale Greater Copenhagen area 

public transport network. By evaluating alternative ways to specify the stochasticity and the 

level of this, it was found that the level of stochasticity should be high to induce high coverage 

and statistically efficient parameter estimates when the choice sets are used for estimation. The 

level of stochasticity should, however, be introduced with parsimony, as significant increases 

translate into generating redundant and counter-intuitive paths with no considerable 

improvement in coverage. Adding heterogeneity across travellers improved the results 

considerably, and induced coverage levels up to a very high 98.8% at an 80% overlap 

threshold. This shows the potential of the method proposed as well as the importance of 

accounting for as much individual heterogeneity as possible as models become more 

disaggregate. 

 A revisit to the original conditions underlying the Stochastic User Equilibrium (SUE) has 

led to the realisation that the difficulty of specifying the choice set is related to the assumption 

on the distribution of the mis-perceptions. It is the commonly adopted assumption that the 

distributed elements follow unbounded distributions which induces the need to enumerate all 

paths in the SUE, no matter how unattractive they might be. The Deterministic User 

Equilibrium (DUE), on the other hand, has a built-in criterion distinguishing definitely unused 

from potentially used routes, but the cut-off in terms of cost differences is strict. Based on this, 

two new model frameworks and corresponding equilibrium formulations are introduced. Both 

models combine the strengths of the SUE and DUE by permitting the consistent combination 
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of (i) equilibrated non-universal choice sets and (ii) flow distribution according to random 

utility maximisation theory. One model allows distinction between used and unused routes 

based on the distribution of the random error terms, while the other model allows this 

distinction by posing restrictions on the costs of used/unused routes.  

 Generic path-based solution algorithms and convergence measures are introduced for the 

model which seemed the most straightforward to apply given its connection to existing RUM-

based models (the one adding restrictions). Different variants of the algorithms were validated 

for the MultiNomial Logit and Path Size Logit choice models on the Sioux Falls as well as the 

large-scale Zealand network. A novel consistent convergence measure verified extremely fast 

and well-behaved convergence to an equilibrated solution on non-universal choice sets (across 

different congestion levels, scale parameters and step-sizes). The composition of the choice 

sets were validated by comparison to real-life route choices of 16,618 individual trips on the 

Zealand network. The applications were also very successful in reproducing observed link 

counts. The solution algorithms are thus computationally attractive, and the solutions and the 

underlying framework are behaviourally realistic. This causes the new framework and solution 

algorithms to be highly attractive to apply as models become more disaggregate. 

 Summarising, the PhD study has given contributions to several of the components that 

concern the estimation and solution of traffic assignment models in large-scale applications. 

Through this, the PhD study has successfully facilitated the consistent integration at the 

disaggregate level across traffic model parts. This means that the true potential of the activity-

based models can be actualised.  
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Dansk Resumé 

Trafikmodeller bliver mere og mere detaljerede, for derved bedre at kunne beskrive individer 

og deres rejsemønstre. I overensstemmelse med denne udvikling, fokuserer dette Ph.D. projekt 

på at muliggøre brugen af rutevalgsmodeller i fuldt disaggregerede aktivitets-baserede 

modeller. Sådanne modeller tillader, i den rette integrering mellem komponenterne, realistisk 

repræsentation af individspecifikke præferencer, hensyntagen til begrænsninger forbundet med 

hjemlige pligter samt sikrer at tid-sted sammenhængen mellem en pågældende dags ture er 

realistisk. Derudover kan individuelle ture modelleres på et mere realistisk adresse-til-adresse 

niveau, hvorved der ikke genereres usikkerheder pga. aggregering. Projektet fokuserer på 

storskalamodeller og præsenterer metoder der muliggør at disaggregerede modellers sande 

potentiale kan realiseres. For at nå disse mål har projektet bidraget til flere af de komponenter, 

der udgør rutevalgsmodellerne ved at (i) muliggøre brugen af de mere hyppigt tilgængelige 

datakilder, indeholdende information om individers rejsemønstre i specifikationen af modellen, 

(ii) foreslå en metode til at udnytte data om observerede præferencer i virkelige situationer 

(Revealed Preference, RP) til at give indsigt i værdien af trængselstid og værdien af 

pålideligheden af rejsetid, (iii) bidrage med en metode, der formår at tage hensyn til individers 

ukomplette information ved generering af valgsæt i komplekse multi-modale netværk, (iv) 

adressere vanskelighederne i forbindelse med valgsætgenereringen, ved at foreslå en ny 

teoretisk ramme med tilhørende løsningsalgoritmer, som på konsistent vis kan separere 

anvendte og ikke-anvendte ruter. 

 I forbindelse med udvikling og validering af realistiske storskalamodeller er det 

essentielt, at der er data tilgængeligt. Moderne teknologi gør det muligt at få nem adgang til 

RP data samt gennemføre store dataindsamlinger. De resulterende datasæt er imidlertid meget 

store, og der skal derfor typisk foretages en bearbejdning af data, før disse kan tages i 

anvendelse i egentlige analyser. Datasættenes størrelse umuliggør dog manuel bearbejdning, 

hvorfor det er nødvendigt, at der er metoder tilgængelige, der automatisk bearbejder og 

konverterer data til det rigtige format. Ph.D. projektet foreslår en fuldautomatisk metode til at 

forarbejde sådanne datasæt. Metoden bearbejder de ’rå’ person-baserede GPS data ved at 

kombinere fuzzy logic- og GIS-baserede metoder og identificerer ture, delture samt det mest 

sandsynlige transportmiddel anvendt på hver deltur. Metoden blev valideret ved brug af et 
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datasæt bestående af GPS logs fra 183 beboere i københavnsområdet. Et spørgeskema blev 

brugt til at validere resultaterne, der viste, at den foreslåede metode (i) identificerede 

tilsvarende delture i GPS data for 82 % af de rapporterede delture, (ii) undgik at klassificere 

ikke-ture (fx ’støj’ omkring aktivitetspunkter) som delture og (iii) identificerede det korrekte 

transportmiddel for mere end 90% af delturene i GPS data. Disse resultater synes meget 

lovende, særligt i sammenligning med resultater genereret af eksisterende algoritmer. 

Resultaterne understreger den foreslåede metodes potentiale samt muligheden for at bruge 

person-baserede GPS enheder som dataindsamlingsmetode i store multi-modale 

transportnetværk. 

 Det er velkendt at længere rejsetider pga. trængsel påvirker vores transportadfærd (samt 

hvordan vi tilrettelægger vores dagligdag), men også rejsetidens pålidelighed har stor 

indflydelse på vores adfærd. For at øge trafikmodellens realisme er det derfor afgørende at 

forstå og repræsentere to værdier, der er relateret til tidsværdien (VoT) på korrekt vis: (i) 

værdien af trængsel (VoC), idet VoT varierer med kørselsforholdene, og 

trængselsmultiplikatoren repræsenterer derfor den øgede kompleksitet når mængden af biler på 

vejene øges; (ii) værdien af pålidelighed (VoR), idet VoT også relaterer sig til 

forudsigeligheden af rejsetiden og muligheden for gentagelse af rejseoplevelsen. Trængsel og 

pålidelighed har stor indflydelse på hinanden, men hidtil er det kun studier baseret på 

erklærede præferencer i hypotetiske situationer (Stated Preference, SP), der samtidigt har 

inkluderet variable relateret til begge disse komponenter. 

 Ph.D. projektet bidrager til den nyeste forskning ved at foreslå en ny metode, der 

anvender RP data til at estimere VoR og VoC i én samlet model. Metoden estimerer en middel-

varians model, der således tager hensyn til både trængsel og pålidelighed i samme model. Der 

blev anvendt GPS data til at estimere to mixed Path Size Logit modeller – en model blev 

estimeret på 7,964 observationer uden for myldretid, mens en anden model blev estimeret på 

5,759 observationer inden for myldretid. Resultaterne viste, at værdien af de forskellige 

tidskomponenter (fri rejsetid, trængselstid samt pålideligheden af rejsetiden) samt 

trængselsmultiplikatoren var signifikant højere i myldretiderne i forhold til uden for 

myldretiderne. Dette synes plausibelt, idet rejsende i myldretiderne ofte oplever større 

sanktioner ved forsinkelser og derved oplever større tidspres. Den marginale substitution 
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mellem pålideligheden af rejsetiden samt den totale rejsetid (når der korrigeres for det 

gennemsnitlige trængselsniveau) varierede ikke mellem tidsperioder eller trafikforhold. 

Projektet understreger potentialet for at anvende (de mere og mere tilgængelige) data omkring 

rejsendes faktiske adfærd, til at bestemme den monetære værdi af de enkelte 

rejsetidskomponenter – for derved at øge realismen af storskalamodeller. 

 Valgsætgenerering er en vital komponent i rutevalgsmodeller. Det er imidlertid ikke en 

nem opgave at generere valgsæt i virkelige netværk, idet: (i) der nærmest er uendeligt mange 

alternativer, men store valgsæt kræver megen beregningskapacitet, (ii) der skal tages hensyn til 

effekten af trængsel, (iii) valgsættene bør indeholde alle relevante alternativer (også de 

observerede ruter, hvis sådanne er tilgængelige) og udelade irrelevante og overflødige ruter og 

(iv) attributterne skal variere tilstrækkeligt mellem alternativerne, hvis valgsættene skal bruges 

til modelestimering.  

 Ph.D. projektet bidrager til den nyeste forskning ved at foreslå og validere en ny metode 

til valgsætgenerering. Metoden er baseret på simulation og kan benyttes på generelle netværk. 

Valideringen benyttede 5,131 observerede ruter for ture foretaget med offentlig transport i 

københavnsområdet. Dette netværk er kendetegnet ved at være meget stort og komplekst. 

Forskellige konfigurationer samt størrelser (varians) af stokastikken blev undersøgt. 

Resultaterne viste, at variansen af stokastikken skal være høj, for at de observerede ruter er 

repræsenterede i de genererede valgsæt (dækningsgrad). Tilmed skal variansen af stokastikken 

også være høj for at statistisk stabile parametre genereres, hvis valgsættene bruges til 

modelestimering. Variansen skal imidlertid øges med forsigtighed, idet for store forøgelser 

resulterer i, at der bliver genereret ulogiske og overflødige ruter uden stigning af 

dækningsgraden. Hensyntagen til at individer har forskellige præferencer, gav store 

forbedringer af resultaterne, og der blev genereret dækningsgrader helt op til 98.8 % ved 80 % 

tærskel for overlappet. Dette understreger potentialet af den foreslåede metode samt 

vigtigheden af hensyntagen til så mange individuelle præferencer som muligt, når modellerne 

udvikles til at blive mere og mere detaljerede. 

 Ph.D. projektet foretog en grundig analyse af den oprindelige formulering, der ligger til 

grund for modellen baseret på stokastisk brugerligevægt (Stochastic User Equilibrium, SUE). 
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Denne analyse ledte frem til en konstatering af, at det velkendte problem med at specificere 

valgsættene i SUE modeller kan relateres til de underliggende distributioner, der typisk 

anvendes til repræsentation af de rejsendes unøjagtige information/opfattelse af netværket. 

Disse distributioner er ikke-begrænsede, hvilket medfører et behov for at fastlægge og tilskrive 

trafik til alle alternativer, uanset hvor uattraktive de er. En anden hyppigt anvendt model, 

nemlig den deterministiske brugerligevægt (Deterministic User Equilibrium, DUE), har 

derimod en indbygget mekanisme, der adskiller potentielt anvendte ruter fra ruter, der med 

sikkerhed ikke anvendes. Adskillelsen er imidlertid strikt, således at kun ruten/ruterne med 

præcis den mindste omkostning tillades anvendt. Disse styrker og svagheder ved SUE og DUE 

har ledt Ph.D. projektet frem til at foreslå to nye modeltyper samt tilhørende 

ligevægtsformuleringer. Begge nye modeltyper kombinerer styrkerne af SUE og DUE ved at 

tillade konsistent kombination af (i) valgsæt, der er i ligevægt men ikke er universelle samt (ii) 

fordeling af trafikken ifølge teorien omkring nyttemaksimering (Random Utility Maximisation, 

RUM). Den ene modeltype adskiller anvendte fra ikke-anvendte ruter via de underliggende 

distributioner. Den anden modeltype foretager denne adskillelse via funktioner, der definerer 

grænser for omkostningerne på benyttede/ikke-benyttede ruter. 

 Den sidstnævnte modeltype synes mest ligetil at anvende (modeltypen hvor funktioner 

definerer omkostningsgrænser) og Ph.D. projektet har foreslået generiske rute-baserede 

løsningsalgoritmer og konvergensmål for denne. Projektet testede og validerede forskellige 

varianter af løsningsalgoritmerne under brug af MultiNomial Logit og Path Size Logit 

valgmodellerne. Dette blev gjort på Sioux Falls netværket samt Sjællandsnetværket, som er et 

storskalanetværk. Et nyt konvergensmål verificerede ekstremt hurtig og stabil konvergens til en 

løsning i ligevægt, hvor der anvendes konsistente ikke-universelle valgsæt (på tværs af 

efterspørgselsniveauer, skalaparametre samt step-size strategier). Sammensætningen af 

valgsættene blev valideret ved sammenligning med 16,618 observerede ruter indsamlet i 

Sjællandsnetværket. Valideringen fastlagde tilmed, at alle tests formåede at reproducere 

vejtællinger meget nøjagtigt. Løsningsalgoritmerne er meget hurtige og de fundne løsninger, 

samt den underliggende modeltype, er adfærdsmæssigt meget realistiske. Dette gør, at disse er 

særdeles attraktive at benytte, når modellerne bliver mere detaljerede. 
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 Ph.D. projektet har således givet bidrag til flere af de komponenter, der vedrører 

estimering og løsning af rutevalgsmodeller i storskalamodeller. Gennem dette har Ph.D. 

projektet bidraget til, at der kan foretages en konsistent og fuldt disaggregeret integration af 

trafikmodellens komponenter. Dette muliggør, at det sande potentiale af aktivitetsbaserede 

modeller kan udnyttes. 
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1 INTRODUCTION 

Transport models are becoming more and more disaggregate to facilitate realistic 

representation of individuals and their travel patterns. The overall model framework however 

needs to be specified accordingly, so that all model components operate at a fully disaggregate 

and integrated level. Only thereby is the true potential of the developments exploited, allowing 

to account for individual-specific household interactions, time-space constraints and preference 

structures. Trips can also be evaluated at a detailed address-to-address level, and thereby 

aggregation biases can be avoided. In line with this development, the present study facilitates 

the deployment of traffic assignment models in fully disaggregate activity-based model 

frameworks. The study focuses on large-scale applications, and presents theoretical and 

empirical contributions to the state-of-the-art for different components of traffic assignment 

modelling. Specifically, attention is given to the generation of choice sets for individual trips as 

well as the use of disaggregate data in the estimation of utility functions in route choice 

models. Attention is also given to the difficulty of obtaining theoretical consistency of the 

choice sets and route choice model in the solutions. Finally, the identification of such solutions 

via algorithms that are operational at a fully disaggregate level is also addressed. 

1.1 BACKGROUND 

The transportation network has been shown to highly influence the way people organise their 

lives in terms of residential location, work location, daily activity-patterns, vehicle ownership, 

choices of mode of transport, route choices etc. (e.g., Cascetta, 2001; Ortúzar and Willumsen, 

2001; Badoe and Miller, 2000; Chakraborty and Mishra, 2013). Altering the network thereby 

impacts many people and is often very expensive, and the decision process should be supported 

by a transport model. It is, however, not a trivial task to specify such a model due to the 

complexity of the system, consisting of individuals which make rational or non-rational 

decisions in an always changing and very large network. Among the main elements to consider 

in the model specification is the selection of the underlying behavioural framework and the 

aggregation level on which the model operates. Also, the potential utilisation of data and the 

need for computational feasibility influence the model specification and thus the behavioural 

realism. 



 

 

2 

 The models are becoming more and more disaggregate both on the demand side and the 

supply side. This is done to better capture the fact that individuals behave differently, 

depending on their individual preferences and knowledge about the transportation network. 

The demand side derives the demand for travel, and on this side models are becoming more 

disaggregate in their representation of individuals. Such models include, for instance, the daily 

time constraints of individuals and their preferences towards travel time reliability and delays 

due to congestion etc. The supply side determines the route choice of travellers and computes 

the network response in accordance with the demand. On the supply side, traffic assignment 

models are becoming more disaggregate in their representation of elements such as the spatial 

and temporal formation and dissipation of congestion as well as the preferences of individuals 

when conducting the route choice. The advancements towards more disaggregate and accurate 

models have been pursued quite independently within each of the sides of supply and demand 

(Lin et al., 2008). However, to get the full benefit and synergy of the advancements on both 

sides, the state of the art in each of these has to be closely integrated into an overall framework. 

 The disaggregation towards more behaviourally realistic models has been made possible 

by (i) easier access to large computational power, (ii) more readily available disaggregate data 

in an easily accessible format, such as digital databases containing network information or the 

home and work addresses of inhabitants, and (iii) the development of efficient survey methods 

enabling the collection of route level Revealed Preference (RP) data among many respondents 

by using GPS units. Access to larger computational power combined with the development of 

more efficient solution algorithms facilitate that computation times remain reasonable when 

disaggregating models to account for e.g. additional variables, individual preferences and 

congestion at a far more detailed level. The increased availability of data at a very 

disaggregate (often individual) level also facilitates an increase in the behavioural realism of 

disaggregate models. The data sources are often RP data, collected by GPS devices, Travel 

Card technologies, or Smart Phones. Implemented correctly, the data facilitate not only large-

scale validation and estimation of finished models. Rather, the data should be thought into the 

actual development process in close connection/integration with the theoretical considerations 

such as maintaining convergence of the solution methods. Thereby the full potential of these 

increasingly available data sources is utilised. However, one fundamental issue lies in the size 
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and quality of the datasets, which may contain millions of passively collected observations 

such as GPS logs. It is essential that some efficient post-processing procedures are available, to 

make such data operational at all levels of the model development and validation process. 

These should process the raw data in an automated manner and convert the results into the 

proper data formats (e.g., Chen et al., 2010; Schüssler and Axhausen, 2009; Bolbol et al., 2012; 

Stopher et al., 2008).  

 The realism of the transport model output relies heavily on the assumptions of the 

behavioural framework underlying the traffic assignment model. Most traffic assignment 

models adopt either the Deterministic User Equilibrium (DUE, Wardrop, 1952) or the 

Stochastic User Equilibrium (SUE, Daganzo and Sheffi, 1977) framework. The DUE has been 

widely applied in large-scale applications. One reason for this is its computational 

attractiveness in that it implicitly distinguishes between potentially used routes and definitely 

unused routes, thereby circumventing the computationally intractable enumeration of the 

universal choice set. The drawback of the DUE is, however, that it is based on an assumption 

of perfect information of the travellers and the modeller. This non-realistic assumption is 

removed by the SUE as this allows the adaptation of Random Utility Maximisation (RUM) 

models. RUM models allow the behaviourally realistic representation of perception errors of 

the traveller as well as the modeller. Consistent adaptation and integration of state-of-the-art 

RUM models into practical large-scale traffic assignment models, however, poses some 

distinct challenges. A major issue related to this lies in the generation of the set of routes used. 

Under the commonly adopted assumptions on the perception errors, RUM models suffer from 

the theoretical need to enumerate and assign traffic to the universal choice set. This is 

intractable for large-scale traffic assignment problems as the universal choice set may contain 

millions of routes for each relation. Consequently, SUE is usually found among a subset of the 

universal choice set in real-life applications and this induces a theoretical inconsistency with 

the underlying framework. The generation of the subset is not trivial, as the SUE does not 

provide any conditions/requirements to help distinguishing between relevant and irrelevant 

routes. Rather, the issue of sampling the choice sets in such a way that they are composed of all 

relevant alternatives, while leaving out non-relevant alternatives, is left to the modeller. 
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1.2 AIMS AND MAIN CONTRIBUTIONS 

Overall, the present study aims to facilitate increased behavioural realism of large-scale 

transport models. When compared to existing models, fully disaggregate models seem to have 

the potential to improve the realism through a more detailed representation of individuals and 

their travel patterns. This is however only true under the correct specification of and integration 

across model components. The study focuses on the traffic assignment model and aims to 

address the potentials and challenges that emerge for this when adopting a fully disaggregate 

approach. 

 Specifically, the study aims to: 

1) Investigate actual path choices of public transport users through the proposal and 

assessment of a choice set generation method applicable in a large-scale multi-modal 

network; 

2) Investigate the possibility to process GPS data into a format that enables its use in 

traffic assignment models; 

3) Investigate the possibility to use RP data to provide evidence on the value of 

congestion and the value of reliability; 

4) Explore the possibility to obtain theoretically consistent equilibrated SUE-like flow 

solutions among equilibrated non-universal choice sets for large-scale applications. 

 The following subsections clarify each of the four aims and state how and in which 

papers they are addressed.  

1.2.1 CHOICE SET GENERATION METHOD 

A lot of research is focusing on how to generate route choice sets that consist of all relevant 

alternatives, leaving out non-relevant and redundant alternatives (e.g., Bovy, 2009; Ben-Akiva 

et al., 1984; Prato and Bekhor, 2006; Frejinger, 2007). The aim of the present study is to 

contribute to this research by proposing a choice set generation method which is in line with 

the development towards disaggregate models, by accounting for taste heterogeneity and 

perception errors. The model should be applicable to general transport networks, but the aim is 



 

 

5 

to validate it by using 5,131 observed route choices collected in the highly complex multi-

modal Greater Copenhagen area public transport network.  

 Rasmussen et al. (2014a) address these aims. This work develops and validates a 

simulation-based choice set generation method that can account for taste heterogeneity and 

perception errors. By evaluating alternative ways of specifying the stochasticity and its level, it 

is found that the level of stochasticity should be high to provide statistically efficient parameter 

estimates when the choice sets are used for estimation. The level of stochasticity should, 

however, be introduced with parsimony; significant increases translate into the generation of 

redundant and counter-intuitive paths and no considerable improvement in coverage. Adding 

heterogeneity across travellers into the model improves the results considerably, and induced 

coverage levels up to 98.8% at an 80% overlap threshold. These results show the importance of 

accounting for as much individual heterogeneity as possible as models become more 

disaggregate. 

1.2.2 DEDUCING DETAILED TRIP INFORMATION FROM RAW GPS DATA 

The collection of individual-based GPS data is a valuable RP survey method to investigate the 

travel patterns and route choices of travellers. This is because it provides a cheap way of 

collecting very disaggregate information on actual route choices and travel patterns over long 

periods of time (e.g., Nielsen, 2004; Liu et al., 2010; Bierlaire et al., 2013). In order to exploit 

the potential of the data, it is, however, essential that automated methods are available to post-

process the large raw datasets. The present study aims to propose such a method to identify 

trips, trip legs, and assign the most probable mode of transport. A GPS dataset collected as part 

of the ‘Analysis of activity-based travel chains and sustainable mobility’ (ACTUM) project 

should be used to validate the method. This dataset consists of individual-based 3-day GPS 

logs from 183 respondents, collected in the highly complex large-scale Greater Copenhagen 

area multi-modal network. 

 Rasmussen et al. (2014b) address these aims. A combined fuzzy logic- and GIS-based 

algorithm is developed to process raw individual-based GPS data with no additional 

information requested from the respondent. The validation showed very promising results, 

especially when compared to existing algorithms. The findings highlight the possibility to use 
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individual-based GPS units for travel surveys in real-life large-scale multi-modal networks. 

The processed GPS data are used in the case studies of Prato et al. (2014) and Rasmussen et al. 

(2014d), thereby demonstrating its applicability to improve the behavioural realism of traffic 

assignment models. 

1.2.3 VALUE OF CONGESTION AND VALUE OF RELIABILITY 

Travel time due to congestion and travel time reliability are recognised as two major influences 

on choices related to travel. Several studies have addressed the issue of evaluating the Value of 

Congestion (VoC) and the Value of Reliability (VoR) (e.g., Train, 1976; Noland and Small 

1995; Li et al., 2010; Wardman and Ibánez, 2012). Most studies, however, used Stated 

Preference (SP) survey methods for the evaluation (for an overview, see Wardman and Ibánez, 

2012). The present study aims to contribute to the existing literature on the topic by proposing 

an approach that utilises the increasingly available disaggregate RP data to estimate the VoR 

and VoC concurrently. Additionally, the study aims to demonstrate the applicability of the 

approach and to provide evidence on the value of the VoR and VoC by estimating these using 

GPS data. 

 Prato et al. (2014) address these aims. The work proposes a mean-variance model based 

on RP data which considers the free-flow travel time, congestion travel time, and travel time 

reliability concurrently. The model is successfully applied to estimate mixed Path Size Logit 

(PSL, Ben-Akiva and Bierlaire, 1999) models using a sample of 5,759 observations in the peak 

period and a sample of 7,964 observations in the off-peak period. The results verify that 

congestion and reliability highly influence route choices. Therefore, disaggregating the models 

to account for this improves their behavioural realism. The results also show that the marginal 

rate of substitution between the travel time reliability and the total travel time does not vary 

across the peak and off-peak periods and that, as expected, the VoR and VoC are higher in 

peak periods than outside peak periods. 

1.2.4 NEW MODELLING FRAMEWORK 

SUE suffers from the need to enumerate the full universal choice set. This is not feasible for 

large-scale applications, and SUE is therefore often approximated by distributing flow among a 

pre-specified set of paths that are not trivial to specify (e.g., Prato and Bekhor, 2007; Bliemer 
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and Bovy, 2008). The DUE allows unused routes at equilibrium, but fails to account for mis-

perceptions of travellers. The study aims to remove these limitations of the SUE and DUE by 

seeking to propose an alternative modelling framework. This should facilitate flow distribution 

according to RUM on consistently equilibrated, but non-universal, choice sets. Furthermore, 

the study aims to contribute with the proposal and large-scale validation of a corresponding 

generic solution algorithm. 

 Watling et al. (2014) and Rasmussen et al. (2014cd) address these aims. Based on an 

analysis of the existing frameworks, two new model frameworks and corresponding 

equilibrium formulations are introduced. One model allows distinction between used and 

unused routes based on the distribution of the random error terms, while the other model 

allows this distinction by posing restrictions on the costs of used/unused routes. Both models 

fulfil the aim by allowing an equilibrated flow solution according to some RUM among a non-

universal but equilibrated choice set. Generic path-based solution algorithms and convergence 

measures are proposed for the model that seems the most straightforward to apply. Different 

variants of the algorithms are validated on the large-scale Zealand case study. These are found 

to be highly computationally attractive and provide extremely fast convergence to an 

equilibrated solution with reasonable choice set sizes and composition. The choice set 

composition is evaluated using, among other, the GPS data collected as part of the ACTUM 

project.  

1.3 OUTLINE 

The remainder of the present thesis is structured as follows. Section 2 starts by giving an 

introduction to transport models, the demand and supply sides, and the importance of correct 

integration between these. Thereafter the section narrows the focus to the traffic assignment 

model by giving a short description of each of its components. Conclusions of the PhD study 

and future research possibilities are presented in section 3. The six papers that constitute the 

contributions of the PhD study can be found in appendices 1-6, and these should be read before 

reading section 3. Note that the working paper (Rasmussen et al., 2014d) is longer than a 

normal journal paper. This is because we have prioritised to report the results of a range of 

different tests, to demonstrate the applicability and attractiveness of the solution algorithms and 

model framework.  
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 All the papers adopt (with minor variations) the same case study area and utilise some 

RP data source (except Watling et al. (2014) which do not conduct any large-scale 

applications). The RP data source is either diary data (Rasmussen et al., 2014a) or GPS data 

(Prato et al., 2014; Rasmussen et al., 2014bd). Appendix 7 provides additional details about the 

RP data sources. The appendix also describes the demand matrices and digital network 

representation that were used in the case studies. Some details regarding the preparation of the 

data used in Prato et al. (2014) are given in Appendix 8.  
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2 DISAGGREGATE TRANSPORT MODELS 

This section gives a short introduction to transport models. Section 2.1 sets off with a 

description of the general transport model structure, followed by a brief introduction to the 

development towards disaggregate models on the demand side as well as the supply side. 

Hereafter, the section focuses on the vital need for close integration between the two sides. The 

thesis contributes to the traffic assignment model, which resides in the supply side. Section 2.2 

is therefore dedicated to a general description of the elements of the traffic assignment model. 

2.1 TRANSPORT MODEL STRUCTURE 

2.1.1 MODEL STRUCTURE 

A real-life transportation system is complex in multiple dimensions by consisting of 

individuals which make complex rational or non-rational behavioural decisions in an always 

changing and very large network. Transport models seek to represent this complex system as a 

mathematical problem constructed based on simplifying assumptions about the real-life 

system. Despite the simplifications, transport models often handle very complex mathematical 

problems that are not possible to solve by standard mathematical problem solvers (among 

others, Ben-Akiva and Lerman, 1985).  

 In practical problem solving, the highly complex problem is often split into several 

modelling parts. For example, the well-known four-stage model splits the problem into the 

elements of trip generation, trip distribution, mode choice and traffic assignment (see e.g., 

Ortúzar and Willumsen, 2001). An alternative way to look at the problem is from a demand-

supply perspective, where the first three elements of the four-stage model would reside on the 

demand side and the traffic assignment on the supply side. In general, the demand side derives 

the demand for travel in terms of e.g. number of trips of a certain type and mode of transport 

between spatial locations, possibly at certain points in time. The supply side, constituted by a 

traffic assignment model, then applies a route choice model and derives the network 

performance in terms of link and route travel costs resulting from the demand. The two sides 

are mutually dependent, as the travel demand affects the network in terms of e.g. congestion in 

the network, and the network performance affects the travel demand by e.g. reducing demand 

as travel costs increase. Each of the two sides, therefore, constitutes problems that are 

‘conditional’ on the other. To find a consistent solution, transport models often adopt a 

procedure which iterates between the two sides in some gradual way. In such an approach, the 
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iteration scheme is continued until some convergence measure is fulfilled. This could e.g. 

specify that the derived travel demand should, at a certain threshold, be identical across two 

consecutive iterations.  

2.1.2 DISAGGREGATE MODELS ON THE DEMAND AND SUPPLY SIDE 

In the development of transport models, there seems to be a clear tendency that the components 

of transport models are becoming more and more disaggregate. This is done to facilitate better 

representation of the real-life system and consequently improvement of the behavioural realism 

of the transport models. The development is undertaken on the demand side as well as the 

supply side.  

 On the demand side, the traditional statistically-oriented trip-based framework has been 

the most widely adopted approach because of its use in the four-stage model (Ortúzar and 

Willumsen, 2001). While many of the models that are developed today still use this approach, 

more and more models adopt the disaggregate and more behaviour-oriented activity-based 

model framework (e.g., Axhausen and Gärling, 1992; Jones et al., 1993; Bhat and Koppelman, 

2003; Arentze and Timmermans, 2004; Bhat et al., 2004; Vovsha and Bradley, 2006; Lin et al., 

2008; Hansen, 2014). This framework stems from a realisation that demand for travel is, 

possibly with the exception of sightseeing, derived from the more fundamental need to 

participate in activities. Such activities could be work, leisure, shopping etc. The locations of 

the activities are usually spatially distributed and the need to move between these locations 

induces the demand for travel.  

 Overall, the activity-based paradigm and models seem conceptually more appealing than 

the traditional trip- and tour-based methods for several reasons: (i) focus is on sequences and 

patterns of activities and travel rather than on individual trips; (ii) various activity-travel 

decisions are recognised as linked rather than as independent; (iii) emphasis is on individual-

level travel patterns rather than on aggregate trips at a zone-to-zone level; (iv) intra-household 

interactions are typically incorporated and inter-personal and intra-personal consistency 

measures are considered within the model; (v) time is typically treated as a continuum or at 

least a detailed temporal dimension is accounted for within the model; (vi) space-time 

constraints on activities and travel are included within the model (Lin et al., 2008).  
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 The activity-based paradigm fits well into a micro-simulation platform, as it is based on 

disaggregate complex structures and on behaviour of individuals and households. Several 

implementations in metropolitan areas have combined an activity-based framework with 

micro-simulation on the demand side. Among others Portland (see, e.g., Bowman et al., 1998), 

San Francisco (e.g., Bradley et al., 2001; Jonnalagadda et al., 2001), New York (e.g., Vovsha 

et al., 2002), Columbus (e.g., Vovsha et al., 2003; Vovsha et al., 2004), Dallas (e.g., Bhat et al., 

2004; Pinjari et al., 2006), Toronto (Gao et al., 2010), Southern California (Goulias et al., 

2011) and Tel-Aviv (Bekhor et al., 2011).  

 The activity-based models operate in continuous time (or with short time intervals) as 

well as at an individual and often address-to-address level. Ideally, the models would therefore 

be able to output very disaggregate trip information to the traffic assignment model, though not 

done very often. Moreover, this output would be address-to-address trip tables specifying 

departure time and mode of transport. The trip tables would also specify trip purpose and 

socioeconomic characteristics which, in the traffic assignment model, can be associated to 

specific route choice parameters of the individual trips. 

 On the supply side, the traditional approach for large-scale applications has been static 

zone-to-zone-based traffic assignment. This is also highly linked to its use in the widely 

adopted four-stage model. The approach typically models ‘average’ network conditions 

without considering the temporal dynamics with which congestion evolves over time. The 

traveller representation is also done at an aggregate zone level. In such a system each zone 

covers hundreds, thousands or even millions of inhabitants, dependent on the spatial extent of 

the study at hand. Travel preferences are also handled at an aggregate level, possibly by trip 

purpose, and in some applications the choice function contains only the travel time. Advances 

towards more disaggregate representations have been proposed, leading to an improvement in 

behavioural realism. The disaggregation has been conducted in multiple dimensions. Today, 

models exist that better capture the temporal dynamics (congestion built-up and dissipation e.g. 

around intersections) through more disaggregate time representation in dynamic or pseudo-

dynamic models (e.g., Ben-Akiva et al., 2012; Florian et al., 2008; Balakrishna et al., 2012). 

The behavioural realism of the models has also been improved through the development of 

disaggregate choice models and choice set generation methods (section 2.2). These facilitate 
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the use of advanced choice functions for multiple trip purposes and the representation of taste 

heterogeneity across individuals (e.g., Nielsen, 2000; Bovy and Fiorenzo-Catalano, 2007; 

Rasmussen et al., 2014a).  

2.1.3 INTEGRATION OF MODEL COMPONENTS 

Considerable advancements towards more disaggregate and realistic models have occurred on 

the supply side and the demand side. The progress in the two streams seems, however, to have 

been pursued quite independently, while less research has focused on how to consistently 

integrate state-of-the-art from both sides into a unified conceptual framework (Lin et al., 2008). 

Using only one of these would fail to exploit the true potential of either approach, and 

inconsistent results would most likely occur. On the one hand, using an activity-based 

paradigm with a static zone-based assignment algorithm, not considering temporal dynamics, 

would negate much of the advantages of predicting travel patterns at an individual level and in 

continuous time. On the other hand, using a trip-based approach that provides travel demand 

over a limited number of time periods and zones to develop the inputs for a dynamic traffic 

assignment model would cancel out the reasons for which dynamic traffic assignment models 

have been developed. 

 To obtain consistent results and to actualise the benefits of advancements on the demand 

and supply sides, the conceptual model framework must be designed accordingly. The 

ACTUM research project seeks to address this by developing a disaggregate transport model 

which combines state-of-the-art on disaggregate modelling on both sides into a consistent joint 

modelling framework (Hansen, 2014). The PhD study has been conducted within the ACTUM 

project, and several of the contributions of the PhD study are planned to be integrated directly 

into the ACTUM model framework. The Greater Copenhagen area is used as case study in the 

ACTUM project.  

 The framework of the ACTUM project uses an individual-level activity-based model to 

generate the demand and combines this with an individual-based dynamic or pseudo-dynamic 

approach on the assignment side. Such an approach that operates at a disaggregate level on 

both sides induces some distinct advantages. Primarily, consistency with no loss of information 

about the trips across the demand and assignment models can be obtained. This is possible as 



 

 

13 

information regarding the individual trip and individual traveller is transferred directly at the 

disaggregate level between the components (no potential aggregation biases). Thereby, the 

explanation and prediction abilities of the model are increased. The remainder of this section 

focuses on the behavioural and computational advantages that arise on the traffic assignment 

side when model components are closely integrated at a fully disaggregate level.  

 From a behavioural perspective, the disaggregate approach allows the assignment 

framework to consider individual preference structures which depend on individual attributes 

such as value of time, income, age, trip purpose, time-of-day, etc. Taste heterogeneity needs 

not be considered in the choice set generation or the route choice, since neither the zones nor 

the population are to be considered in the traffic assignment component (no need to account for 

distributions of preferences across the population in a certain zone). Non-linear terms may also 

be considered in the utility functions, because there is no aggregation process that will affect 

the assignment results. This facilitates higher precision in the representation of preferences of 

individuals and thereby improved behavioural realism. Having no need to account for taste 

heterogeneity in the assignment also allows more flexibility in the selection of the choice 

model; it becomes more attractive to apply choice models for which closed-form expressions 

are available for the choice probabilities (such as the PSL model). This links very nicely to the 

solution algorithms proposed and tested in Rasmussen et al. (2014cd). The tested variants 

adopted the MultiNomial Logit (MNL) and PSL choice models. These do not account for taste 

heterogeneity, but allow (in the PSL implementation) for the important correction for path 

overlapping. Also the underlying RSUE/RSUET framework presented in Watling et al. (2014) 

and Rasmussen et al. (2014d) seem especially attractive to apply to disaggregate transport 

models. This is because they allow for a consistent adaption of advanced preference structures 

in the choice component as well as in the mechanism which, based on actual rather than 

perceived costs, distinguishes used and unused paths.  

 From a computational perspective, an individual-based approach does not necessarily 

induce higher calculation complexity in the assignment than a zone-based approach. This is 

especially the case when the assignment model operates at a disaggregate temporal level, as 

shall be explained in the following. The complexity of an individual-based approach in the 

assignment model is (roughly) independent of the temporal aggregation, but only depends on 
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the number of trips performed. The number of trips performed remains the same when the 

temporal dimension is added to the model, and only some additional updating of the speed-

flow or flow-density functions are required. The complexity of the zone-based approach is 

independent of the number of trips performed, but instead highly dependent on the temporal 

aggregation, in addition to the number of zones and user classes. The calculation complexity 

increases significantly when adding the time dimension to the matrix-based (zone-based) 

assignment; in a pseudo-dynamic assignment, complexity increases by the number of time 

intervals, whereas either a cell-based or a row-based approach is needed in the full dynamic 

case.  

 The road assignment component of the Danish National Transport Model 

(Landstrafikmodel, hereafter denoted as LTM) can serve as an illustrative example of this  

issue of calculation complexity (see details about the LTM in Rich et al. (2010)). The model is 

zone-based (907 zones), and the road assignment covers a total of 19 user classes. This results 

in 15.6 million relations to be investigated in the zone-based system (907x907x19). However, 

the model is pseudo-dynamic by dividing a 24h period into 10 time periods. This generates a 

total of 156 million relations to be investigated in the zone-based system, when no matrix 

thinning is done. However, the total number of trips conducted is 6.6 millions, which 

highlights that the complexity of an individual-based approach would be significantly lower in 

this example, even if the LTM had been a static model. Note that there exist path search 

algorithms that identify the shortest path from an origin to all destinations (e.g., Dijkstra, 

1959). These potentially reduces the computational needs for the path-search, but still the flow 

allocation and network allocation mechanisms would have to consider all relations.. 

 The use of an individual-based assignment model causes an issue to arise with respect to 

the re-evaluation of the demand in each iteration of the transport model. The re-evaluation on 

demand side uses level-of-service measures of chosen as well as non-chosen alternatives. This 

information is readily available in matrix-based assignment models, as the non-chosen 

alternatives are the cells other than the one corresponding to the chosen alternative. The level-

of-service of non-chosen alternatives is, though, not readily available in the individual-based 

assignment model. It cannot be calculated as the average over trips either, because these other 

trips are performed by different persons with different preferences and hence different utilities.  
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 This challenge could be solved using ghost travellers (Teklu et al., 2007). These are 

loaded onto the network along with the actual travellers, however they do not contribute to 

congestion. This may seem computationally demanding, but there is no need to load the ghost 

travellers in every iteration of the solution of the assignment model; each of the ghost travellers 

only needs to be loaded once (e.g., all-or-nothing assignment), namely when the network 

equilibrium has been found. The use of ghost travellers allows reproducing the individuals with 

their characteristics and preferences in order for the level-of-service of the alternatives to be 

accurately represented (i.e. no aggregation bias). The demand side may specify the ghost 

travellers, and thereby obtain the cost of travelling over relevant alternative destinations and 

with relevant alternative modes.  

2.2 TRAFFIC ASSIGNMENT  

There exists a number of different ways to specify a traffic assignment model, each of which 

leads to different theoretical properties as well as implications for real-life applications. Some 

specifications may have well-founded and proven theoretical properties but turn out to be 

computationally infeasible for large-scale applications. Other specifications may allow a 

solution to be found quickly for large-scale applications, but at the expense of compromising 

the theoretical consistency. In general, there are six overall issues to consider in the 

specification of a traffic assignment model; (i) route choice set generation, (ii) specification of 

the choice function, (iii) definition of equilibrium, (iv) solution approach, (v) level of network 

aggregation, and (vi) level of time aggregation. It is important to note that these elements are 

highly interrelated. For example, specifying a dynamic time representation requires the 

definition of the equilibrium also to have a dynamic formulation. The main contributions of 

this PhD study lies within the elements (i)-(iv), and the remainder of this section are dedicated 

to a brief introduction to these.  

2.2.1 ROUTE CHOICE SET GENERATION 

Route choice is often modelled using a discrete choice model (section 2.1). A discrete choice 

model requires a set of alternatives to be available and models the choice of an alternative 

within this set. All possible alternatives can be identified and distinguished clearly in most 

travel-related choice situations, such as e.g. in the choice of mode of transport. This is not as 
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straightforward for route choice modelling; typically, in transport networks a very large 

number of alternatives exist which are hard to enumerate and distinguish, even in small 

networks. On top of this, literature has found that the size and composition of the choice sets 

influence estimation results and prediction abilities (Prato and Bekhor, 2007; Bekhor et al., 

2008a; Bliemer and Bovy, 2008; Rasmussen et al., 2014). This makes the importance of the 

choice set generation component even more evident. Thus, the specification of the choice set is 

not trivial, and a literature review has not identified any formal or mathematically founded 

definition of how the choice set should be composed. Rather, the most commonly adapted 

statement about the choice set composition seems to be somewhat vague by stating (possibly in 

some alternative formulation) that ‘it should consist of all relevant alternative routes, leaving 

out irrelevant routes’ (Bovy, 2009). This statement lacks a formal and theoretically well-

founded definition of the choice set composition, and this has motivated much of the work 

undertaken during the PhD study (Watling et al., 2014; Rasmussen et al., 2014cd).  

 Route choice set generation is generally conducted for one of three purposes; (i) 

generation of (unchosen) alternatives to use for the estimation of parameters in disaggregate 

route choice models; (ii) investigation of alternatives, in terms of the number of alternatives, 

their attributes, variety etc.; (iii) generation of a set of routes that are allocated traffic in a 

traffic assignment model (Prato, 2009). Algorithms for traffic assignment typically generate the 

choice sets either explicitly prior to the application of a flow allocation algorithm to find 

equilibrium, or implicitly as the algorithm iterates towards equilibrium.  

 Performing the choice set generation explicitly sets some strict requirements to the prior 

knowledge of network performance in its congested state (at equilibrium); near equilibrium 

link travel times should be used when generating the choice set. Using free-flow travel times to 

generate alternatives may not generate representative choice sets. The knowledge of congested 

travel times can stem from several sources, e.g. real-life link travel times/speeds obtained from 

GPS data. Such information is however not easy to observe on the full network or, especially, 

when models are used to forecast future situations or effects of policies. 

 Proponents of explicit choice set generation argue for the behavioural rationale of 

separating the generation of considered alternatives from the choice between these (e.g., 
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Cascetta and Papola, 2001; Bovy, 2009). Bliemer and Taale (2006) highlight some advantages 

of explicit choice set generation, e.g. that such an approach allows a more flexible specification 

of the choice model for the allocation of flow. Explicit choice set generation may, however, 

involve some computational challenges, as all paths enumerated have to be stored in memory 

and continuously re-assigned flow (path-based solution algorithm required, see section 2.2.4). 

This can be avoided by using implicit choice set generation methods, which are very closely 

integrated with/into the mechanism allocating flow to solve for network equilibrium. Implicit 

choice set generation also has the advantage that paths are generated as the flow is assigned to 

the network. This means that the routes are generated while considering congestion (without 

the need of additional information from e.g. GPS devices).  

 Ideally, the same specification of the preferences should be used across the choice set 

generation component and the subsequent choice model (estimation or flow allocation) 

component. Only thereby does the ‘hypothesis’ about traveller preferences (used in the path 

generation) become consistent with the preferences that are actually estimated based on these. 

Some difficulties, however, arise for instance when using path-specific attributes in the choice 

model (see Rasmussen et al. (2014a) for a discussion of this), and it is only possible for cases 

where utility functions are used in the choice set generation process. 

2.2.2 SPECIFICATION OF THE CHOICE FUNCTION 

The choice function (or utility function, or cost function) is a vital component of most traffic 

assignment models. The function expresses the trade-off between the attributes/characteristics 

that are assigned by the travellers when they evaluate the attractiveness of alternative routes 

and make their route decision. Numerous studies have investigated which elements the choice 

function should include, and how they should be weighed relative to each other. Studies have 

found that free-flow travel time, congested travel time, travel time reliability, distance covered, 

monetary travel costs, and other factors related to the level-of-service of alternative routes 

highly influence the route choice (e.g. Bekhor et al., 2006; Brownstone and Small, 2005; Prato 

et al., 2014; Rasmussen et al., 2014a; Rich and Nielsen, 2007; Wardman and Ibáñes, 2012; 

Anderson et al., 2014). The choice function may also consider socioeconomic and 

demographic characteristics such as income level, gender, and season ticket ownership (Vrtic 

et al 2010; Anderson, 2013). These and other characteristics may also be used to disaggregate 
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the models to consider different driver categories and trip purposes (e.g., Dafermos, 1972; 

Mahmassani, 2001; Rich et al., 2010). Furthermore, Raveau et al. (2011) found that variables 

related to network topology, e.g. directness of routes, also have a significant impact on the 

route choice of metro users in Santiago, Chile. 

 The choice function may or may not consider stochastic elements, depending on the 

assumptions of the underlying theoretical framework. Leaving out consideration of stochastic 

elements typically leads to DUE, whereas SUE typically emerges by the inclusion of stochastic 

elements in the form of a distributed error-term or distributed parameters (section 2.2.3). The 

error-term represents the non-complete knowledge of the traveller (and modeller), i.e. that the 

route choice is based on what the travellers perceive the costs to be, rather than what they 

actually are.  

 Several studies have shown an interest in accounting for taste heterogeneity and 

heteroscedasticity in route choice models. This is done by letting the parameters of the choice 

function follow some distribution. Ben-Akiva et al. (1993) estimated a model with two 

alternatives, where the time coefficient is log-normally distributed. Dial (1997) formulated a 

traffic assignment algorithm, where drivers have different perceptions about travel times and 

costs because of habitual behaviour, taste differences, or information collection. Nielsen (2000) 

proposed a stochastic public transport traffic assignment model considering differences in the 

choice functions of passengers. The study argued that log-normal and gamma distributions are 

suitable to simulate the heterogeneous preferences of travellers. Han et al. (2001) used uniform 

and normal distributions for delay and travel time in high congestion conditions to model SP 

games of pairwise route choices and commented that the log-normal distribution does not 

produce satisfactory results. Jou (2001) estimated a model with a normally distributed travel 

time parameter to investigate the impact of pre-trip information on route choice behaviour. 

Nielsen et al. (2002) estimated a model for different driver categories and tested both normally 

and log-normally distributed coefficients for travel time and cost. Nielsen (2004) presented an 

SP and RP experiment about road pricing, where the RP data were collected by GPS units in 

vehicles. Models that accounted for heterogeneity in drivers’ responses to pricing schemes 

were estimated. Anderson et al. (2014) collected RP data among public transport users and 

estimated various PSL models as well as a mixed PSL model to account for taste 
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heterogeneity. The heterogeneity was introduced by letting some of the parameters, associated 

to travel time, follow a log-normal distribution. Prato et al. (2014) used RP data collected by 

GPS to estimate a mixed PSL model. Several different distributions were considered for 

parameters associated to cost, travel time components (free-flow, congestion, reliability), and 

turns. The parameters expressing taste heterogeneity for turns and costs were not significantly 

different from zero, and log-normal distribution of travel time components were found to give 

the best model fit. 

 Moving from zone-to-zone based approaches to an individual-based approach induces 

some distinct advantages in the specification of the choice function. In an individual-based 

approach, the question of distributed parameters is not an issue, because the choice function 

has a specific form and parameter-specification for each individual (as discussed in section 

2.1.3). This function is ‘transferred’ from the demand side, and is defined for each individual 

and each trip for direct use in the assignment model. This facilitates the use of choice functions 

which do not require simulation of the choice probabilities. Not having to aggregate in the 

individual-based approach also allows exploring possible non-linearities in the choice function. 

2.2.3 DEFINITION OF EQUILIBRIUM 

Equilibrium models are formulated based on the general assumption that travellers take their 

experiences into account when making decisions. Several types of equilibria are defined in 

literature, based on different assumptions on the behaviour and knowledge of travellers (and 

the modeller). The two most commonly applied equilibrium frameworks (DUE and SUE) will 

be introduced briefly below. An elaborate analysis of the two frameworks can be found in 

Watling et al. (2014). 

 The widely applied DUE defines a stable situation only when no traveller in the network 

can reduce his/her travel time (or in its general formulation: generalised cost) by unilaterally 

selecting an alternative route (Wardrop, 1952). The DUE is thus based on the assumption that 

each traveller has complete and accurate information on all paths and exactly knows their 

characteristics in terms of level-of-service. It is furthermore assumed that the modeller has 

perfect knowledge about the preferences of the travellers and the performance of the network. 

The assumption of perfect information of the travellers and the modeller may, however, not 
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hold in reality because of e.g. the complexity of the network. This realisation has led to the 

SUE model. The SUE defines a stable situation only when no traveller in the network believes 

that his/her travel time (or in its general formulation: generalised cost) can be reduced by 

unilaterally changing his/her route (Daganzo and Sheffi, 1977). The SUE implies that travellers 

may perceive route costs differently than they actually are, and that every traveller takes the 

route which he/she perceives has the minimum cost. This concept of perception errors also 

allows the models to represent the non-perfect knowledge of the modeller, e.g. the failure to 

include a relevant component in the specification of the choice function.  

 The DUE is computationally attractive by implicitly ‘specifying’ the set of possibly used 

routes and preventing the use of many unattractive routes. The cut-off is, however, strict and 

induces the risk of leaving many possibly attractive paths unused. The SUE model allows some 

sort of ‘smoothing’ of this condition, by also assigning flow to paths being slightly costlier 

than the cheapest. It is, however, not only paths being slightly costlier that are required to be 

used: under the often-used assumptions of unbounded support of the underlying distribution(s), 

SUE models will assign some flow to all routes, no matter how costly they may be (see 

Watling et al. (2014) for more details on this). This requires full path enumeration, which is 

computationally infeasible for large-scale applications. In this way, SUE solutions are also 

affected by the addition of any paths (e.g. new network link), even if completely irrelevant for 

the trip being made. The issue is further complicated by the fact that only a sub-set of all 

possible routes will be identified in most practical SUE solution algorithms (section 2.2.4). 

Specifying this sub-set is a non-trivial task to be undertaken without any support from the 

underlying model framework (section 2.2.1). These characteristics of the DUE and SUE have 

led the PhD study to introduce alternative modelling frameworks (Watling et al., 2014; 

Rasmussen et al., 2014cd). These new generic frameworks combine the strengths of the DUE 

and SUE by permitting the consistent combination of (i) unused paths and (ii) the use of RUM 

models for the choice between used paths.  

2.2.4 SOLUTION APPROACH 

As the network size grows, it soon becomes very complex to find a solution that satisfies the 

equilibrium conditions of the DUE and, especially, the SUE. Solutions cannot be identified 

analytically for large-scale systems, but are rather found via some iterative procedure (Ben-
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Akiva and Lerman, 1985). The procedure typically consists of three steps that iterate until the 

desired DUE or SUE is found: (i) use the present network performance to identify an auxiliary 

solution, (ii) shift flow towards the auxiliary solution, and (iii) load the new solution onto the 

network to obtain the resulting network performance. Some solution algorithms require step (i) 

to search for and include new relevant routes. Step (i) and (ii) reallocate the flow towards the 

currently best route(s) (DUE case) or towards the desired route choice distribution (SUE case, 

e.g., Dial, 1971; Sheffi, 1985; Cascetta et al., 1996). For stability reasons, this flow reallocation 

is typically realised in some gradual way that reduces the dynamics of the iterations (step (ii)). 

In large-scale applications the iteration process is not continued until full convergence is found. 

Rather, it is continued either until a pre-specified iteration number has been reached or until the 

solution found resembles the equilibrium solution within a certain threshold. Other applications 

iterate until link flows have stabilised, which, however, does not guarantee convergence (see 

Rasmussen et al. (2014c) for a further discussion of this). I.e. one might add a fourth step to the 

procedure above: (iv) terminate if stopping criterion is met. 

 Traditional SUE and DUE solution algorithms are formulated and solved either in the 

space of path flows or in the space of link flows. Link-based formulations are attractive by not 

having to store the paths, which is computationally demanding and requires a large computer 

memory. Additionally, higher congestion often induces more routes to be generated and thus 

increases the computational requirements and memory usage for path-based algorithms. Link-

based algorithms do not require more memory as congestion increases, and the computation 

time per iteration is typically also the same (Rasmussen et al, 2014d). However, path-based 

formulations allow easier checking for and ensuring the consistency of the choice sets. Path-

based formulations also allow for the inclusion of path-specific attributes in the choice function 

(e.g. congestion toll, ticket cost, or correction for path overlapping). 

 As mentioned earlier, the specification of the choice set is not-trivial (section 2.2.1 and 

section 2.2.3). This is especially evident for the SUE, due to the theoretical need to enumerate 

the universal choice set. Solution algorithms generate the choice set either implicitly in or 

explicitly prior to the flow allocation. Several algorithms exist for explicit choice set 

generation, such as e.g. probabilistic generation techniques (Cascetta and Papola, 2001; 

Frejinger, 2007), breadth first search with network reduction (Rieser-Schüssler et al. 2013), 
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contrained enumeration or branch and bound algorithms (Friedrich et al., 2001; Hoogendoorn-

Lanser et al., 2007; Prato and Bekhor, 2006; Van der Zijpp and Fiorenzo-Catalano, 2005) and 

various deterministic or stochastic shortest path algorithms (Dijkstra, 1959; Sheffi and Powell, 

1982; Ben-Akiva et al., 1984; Akgün et al., 2000; Hunt and Kornhauser, 1997; Lombard and 

Church, 1993; Van der Zijpp and Fiorenzo-Catalano, 2005).  

 Implicit choice set generation is often done by, in each iteration, performing shortest path 

searches based on the travel costs obtained in the previous iteration. Two examples of widely 

applied link-based SUE solution algorithms with implicit choice set generation are the Method 

of Successive Averages All-or-Nothing assignment (MSA AoN, Sheffi and Powell, 1982) and 

the STOCH algorithm of Dial (1971) in combination with MSA (Sheffi, 1985). The algorithm 

combining STOCH and MSA can be used to solve the MNL SUE problem, without requiring 

simulation. The link-based MSA AoN can be applied to find any SUE solution where the 

distribution of the error term can be consistently aggregated from link level to path level. The 

MSA AoN however requires simulation. Fosgerau et al. (2013) proposed a link-based method 

to obtain a solution equivalent to the MNL with infinitely many alternatives. This is found 

without the need for path identification, and can be combined with e.g. MSA to find a 

corresponding SUE solution. Several path-based SUE solution algorithms are also available 

(e.g., Chen and Alfa, 1991; Damberg et al., 1996; Bekhor and Toledo, 2005; Zhou et al., 2012). 

These often solve for a solution among a pre-specified choice set.  

 Turning to the solution of DUE problems, several solution algorithms have been 

presented in literature (among many: Dafermos and Sparrow, 1969; Larsson and Patriksson, 

1992; Han, 2007; Florian et al., 2009; Kumar and Peeta, 2010; Mounce and Carey, 2011). 

Some of these are very efficient and computationally attractive by e.g. not requiring simulation. 

Additionally, the problem of having to pre-specify a subset of routes to be used can be avoided 

(see Watling et al., 2014). Several link-based DUE solution algorithms exist. The link-based 

MSA AoN algorithm can be applied to solve the DUE problem (without simulating the link 

impedances), and the well-known algorithm by Frank and Wolfe (1956) is also a link-based 

DUE solution algorithm. This approximates an optimal step length in every iteration (and is 

thus more computationally demanding per iteration) and converges in fewer iterations than the 

fixed step-length MSA AoN.  
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 As for the SUE, a lot of research goes into path-based assignment algorithms for DUE. 

They include the path-based Disaggegate Simplicial Decomposition (DSD, Larsson and 

Patriksson, 1992) algorithm and the Gradient Projection (GP, Bertsekas and Gafni, 1982) 

algorithm. These two are both similar in concept to the Frank-Wolfe algorithm, as they also 

approximate the optimal step length in every iteration. The DSD and GP have furthermore 

been extended to solve certain SUE problems, see Damberg et al. (1996), Bekhor and Toledo 

(2005), Bekhor et al. (2008b), and Zhou et al. (2012). Another branch of path-based DUE 

solution algorithms which are gaining more and more interest in literature is the algorithms 

based on path-swapping. This branch of solution algorithms has shown fast and stable 

convergence patterns when applied to small-scale networks (Han, 2007; Carey and Ge, 2012; 

Mounce and Carey, 2011; Nie, 2003). To the knowledge of the author, they have however not 

been tested in large-scale applications. 
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3 CONCLUSIONS AND FUTURE RESEARCH 

The PhD study presents theoretical and empirical contributions to the state-of-the-art with the 

aim of facilitating the deployment of traffic assignment models in fully disaggregate activity-

based model frameworks. Use of real-life data and large-scale application have been a priority 

of the study to allow the contributions to be adopted directly into operational real-life models 

(such as the ACTUM model). The study has successfully achieved this: the proposed 

methodologies have been shown to be operational and computationally attractive at a fully 

disaggregate level for large-scale applications and large-scale data sources. The contributions 

relate to (i) the generation of choice sets for individual trips as well as the use of disaggregate 

data in the estimation of utility functions, (ii) the difficulty of obtaining theoretical consistency 

between choice sets and route choice model in the solutions, and (iii) the generation of such 

consistent solutions via algorithms that are operational at a fully disaggregate level. 

 Moving to a fully integrated individual-based approach poses some challenges and 

present great potential. A main advantage is that the utility functions become individual-based. 

This removes the need to account for taste heterogeneity across travellers in the traffic 

assignment model. The RSUET model framework and solution algorithms thereby become 

especially attractive to apply; taste heterogeneity cannot be accounted for, but a rich 

specification of the utility function is allowed. Moreover, state-of-the-art choice models such as 

the PSL can be applied, and the utility function can account specifically for elements such as 

the different components of the travel time as well as non-linearities.  

 The RSUET leads not only to consistent, equilibrated and behaviourally realistic 

solutions, but also removes the need for simulation. This reduces the calculation time and, 

importantly, removes stochasticity in the outputs (which potentially has a major implication for 

project appraisals). Feasibility in terms of calculation time seems to be a major challenge for 

disaggregate models. The study has however shown that the new RSUET framework and 

solution algorithms provide extremely fast convergence, even for large-scale and highly 

congested networks. 

 Large data sources that contain information on the behaviour of individuals become more 

and more available. The study has demonstrated that such data have a huge potential to be 

exploited to improve the specification of the disaggregate models. The data often provide 
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route-level information on behaviour, and thereby seem particularly relevant to use in the 

estimation of the path-based RSUET solution algorithms and the cost threshold of the RSUET. 

In addition to the validation of the new framework, the study used disaggregate data to (i) 

enrich the specification of the utility functions for car users by estimating models which 

include separately the different variables related to time, and (ii) validate a new public 

transport choice set generation method. However, the study not only contributed with ways in 

which data can be used in validation and estimation procedures. It also demonstrated its great 

potential to enrich the specification of the network and its attributes (i.e., GPS logs were used 

to calculate a reliability measure for each link, and network topology was used to identify 

turning movements). 

3.1 DATA PROCESSING 

From a data perspective, the technological development has made it possible to collect 

individual-based GPS data from large samples and over numerous days. The size of the 

resulting datasets has called for automated post-processing methods. The study contributes to 

the state-of-the-art by proposing a new approach to post-process GPS data that uses 

disaggregate digital information on the infrastructure (bus line alignment, time tables, 

information on link type, etc.). The approach was validated by use of data collected in the 

Greater Copenhagen area. This showed that utilising information from a highly complex 

disaggregate network leads to large improvements in the correct classification of trip 

components and mode of transport used. The findings highlight that it is possible and attractive 

to conduct travel surveys based on GPS data collection, even for complex multi-modal study 

areas.  

 One future extension of the method would be to identify the trip purpose directly from 

the raw data. This could be done by, for instance, a combination of using time-stamps of trip 

start/end points and overlay analysis with disaggregate land-use maps. Using time-stamps 

would ensure that activities are done at reasonable time periods (e.g., individual end at home in 

the evening and only shop within opening hours of stores) and the overlay analysis would help 

ensure the reasonability of the land-use at activity locations (e.g., classify purpose of trips 

ending at schools, shopping centres). Identification of the trip purpose would facilitate better 

overall model performance by for instance allowing the model estimation to be done by trip 
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purpose. Another future extension could be to identify whether the GPS carriers perform joint 

travel, which may influence route choices and activity patterns. This could be identified by 

searching for correspondence of trip leg alignment (in time and space) across individuals, e.g. 

among family members or work colleagues.  

3.2 TRAVEL TIME COMPONENTS 

The study is the first to provide an estimation based on RP data, which considers all the 

components related to travel time concurrently, namely the free-flow, congestion, and 

reliability parts. The method was applied to the processed GPS data, and numerical evidence 

was given on the value of congestion and reliability for different traffic conditions and periods. 

Results suggested that the value of the different time components as well as the congestion 

multiplier is significantly higher in peak hours than outside peak hours. This seems reasonable 

because of possible higher penalties for drivers being late, and, consequently, possible higher 

time pressure. An interesting finding is that the rate of substitution between the travel time 

reliability and the total travel time did not change across time periods. Different user types and 

trip purposes could not be distinguished in the data, and a future study could seek to consider 

also this in the model estimation. Overall, the results showed the great potential of exploiting 

GPS data to increase the behavioural realism of models. 

3.3 PUBLIC TRANSPORT CHOICE SET GENERATION 

The study contributes to the state-of-the-art by the proposal of a simulation-based method to 

generate choice sets in a time-expanded public transport network. The method allows to 

account for advanced preference structures and taste heterogeneity across individuals and 

thereby supports the progress towards more disaggregate models. The output generated by 

different specifications of the choice function was compared to RP data. Very high coverage 

levels were generated, and it was found that the specification should account for taste 

heterogeneity in addition to the simulation of edge costs. The results also illustrated that the 

variance of the stochasticity should be high when the choice sets are used for estimation. 

However, it should be introduced with parsimony as too high a variance results in the 

generation of counter-intuitive paths.  
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 Theoretical consistency issues exist across the choice set generation process and the 

model estimation process used to evaluate the method. Ideally, the assumed traveller 

preferences used for the choice set generation should match the preferences estimated 

subsequently. The approach used in the present study does not obtain this neither in the 

functional form (different distributions and different components, e.g. PSL correction in the 

estimation) nor in the parameter values. It would be an interesting future research direction to 

develop a scheme which obtains consistency across the components. One possible approach 

could be a scheme which iterates between the choice set generation method proposed (using 

normal and skew-normal distributions) and the mixed MNP estimator proposed by Bhat and 

Sidhartan (2012). At each iteration, the parameters estimated in the previous iteration would be 

used in the specification of the generation function of the choice set generation method. 

Iterations would continue until convergence is obtained in the estimated parameters between 

iterations.  

3.4 RSUE/RSUET MODEL FRAMEWORK 

The difficulty of specifying the choice set generation mechanism in SUE solution algorithms 

for large-scale applications is linked to theoretical inconsistency originating from the 

theoretical – but practically impossible – need of the SUE to perform enumeration of the 

universal choice set. This is true in the typical setup of the SUE, adopting unbounded 

distributions. Based on this realisation, two new model frameworks and corresponding 

equilibrium formulations were introduced. Both models permit the consistent combination of 

(i) equilibrated non-universal choice sets and (ii) flow distribution according to the RUM 

theory. One model allows distinction between used and unused routes based on the distribution 

of the random error terms. The other model allows this distinction by posing restrictions on the 

costs of used/unused routes (RSUE model). These models answer the need for a theoretical 

framework which allows behavioural realistic flow distribution, while providing a means to 

distinguish attractive and non-attractive paths (rather than leaving this for the modeller).  

 The RSUE model seemed the most straightforward to apply in the short term given its 

connection to existing RUM-based models, and was further developed to include a threshold 

for the cost on used paths to fulfil (RSUET). The threshold ensures that no unattractive paths 

are used at equilibrium (while another condition ensures that no attractive paths are left 
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unused). The threshold can be specified in many ways. The study focused on a formulation 

which defines it as proportional to the cost on the minimum cost route among used routes. This 

provides a nice behavioural interpretation of the mechanism which distinguishes attractive and 

non-attractive paths; there is a limit to how long detours travellers are willing to accept. Many 

existing models do not have such a plausible interpretation of this mechanism, if any. Among 

these are models based on random walk mechanisms that allow loops (e.g., Fosgerau et al., 

2013) and simulation-based models where the random draws may cause completely 

unreasonable paths to be used. 

 Generic path-based solution algorithms and convergence measures were proposed for the 

RSUE and RSUET. The algorithms were validated by application to the highly complex 

Zealand network. Extremely fast and well-behaved convergence was seen to an equilibrated 

solution on consistent non-universal choice sets (across different congestion levels, scale 

parameters, and step-sizes). Comparisons to corresponding GPS traces and link counts verified 

very reasonable choice set composition and distribution of flow. The analyses are the first to be 

conducted in the new framework that, hopefully, will attract interest in future research.  

 The issue of consistent calibration and estimation of the model would be an interesting 

direction for future research. Though the papers have hypothesised about possible calibration 

procedures, no actual calibration has been done. In this regard, the increasingly available route-

level data seem particularly relevant to utilise, due to the path-based formulation of the 

framework and the path-based solution algorithms.  

 Another future research direction would be to extend the framework and solution 

algorithms to explicitly consider the temporal dimension. Temporal disaggregation would be in 

line with the tendency of models to become more disaggregate. It also facilitates to fully 

exploit the potential of correct integration between disaggregate individual-based assignment 

models and activity-based demand models. It seems straightforward to extend the underlying 

conditions and the equilibrium formulations to include the temporal dimension. However, 

some issues would probably arise in relation to the proof of existence of one or several 

equilibrated solutions (as hypothesised in section 5.1 of Watling et al. (2014)).  
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 The solution algorithms and software implementation would also need to be updated to 

account for the temporal dimension. There exist efficient algorithms that perform time-

dependent shortest path searches. Especially the identification of only the single shortest path 

(as needed in the RSUE(min)/RSUET(min, Ω) application) seems to be efficient in time-space 

networks (e.g., Dean, 2004). The largest challenge would probably be to incorporate the 

temporal dimension in the network loading procedure in a way that makes the calculation time 

remain feasible for large-scale applications. Actually, we are currently working on 

incorporating the temporal dimension into the theoretical framework, the solution algorithms 

and the software implementation. Among this is the software implementation of an operational 

link-node network loading model similar to the one proposed in Bliemer (2007). The hope is to 

be able to present some initial results of this work soon.  

 Summarising, the study proposed methods to improve the specification of the utility 

function and the generation of the choice sets. The study also proposed a new consistent 

modelling framework and corresponding algorithms to very efficiently solve for equilibrated 

solutions. The study focused on large-scale applicability at a disaggregate level, and also 

proposed ways to use large-scale individual-level datasets to improve the specification of the 

models. The contributions allow integration of the traffic assignment model and the activity-

based models at a fully disaggregate level, and thereby facilitates the capitalisation of the true 

potential of activity-based models. 
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Abstract: Composition and size of the choice sets are a key for the correct estimation of and 

prediction by route choice models. This study investigates actual path choices of public 

transport users and assesses choice set quality in a multimodal transport network. A timetable-

based simulation method was applied to generate choice sets for 5,131 real-life trips in the 

Greater Copenhagen Area. The method was found suitable for choice set generation in a large-

scale multimodal public transport network, and the importance of the algorithm and the utility 

specification chosen was clearly highlighted. It was found that the level of stochasticity should 

be high to provide statistically efficient parameter estimates when the choice sets are used for 

estimation, but still introduced with parsimony, as significant increases translate into 

generating redundant and counterintuitive paths. Adding heterogeneity across travellers 

improved the results considerably, and as models are becoming more disaggregate, showed the 

importance of accounting for as much individual heterogeneity as possible. 

Keywords: path choice; route choice; public transport networks; choice set generation; 

simulation-based approach 
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1 INTRODUCTION 

In order to understand the determinants of choice of public transport modes and to optimise the 

yield of investments in public transport systems, it is essential the availability of traffic models 

able to capture the travellers’ behaviour sensitivity to public transport system’s attributes and 

to predict demand and path choices on public transport networks in a realistic manner.  

 Modelling path choice essentially consists of two parts, namely the generation of a 

choice set and the representation of the choice between the generated paths. The available 

paths can be generated either explicitly prior to the choice process or implicitly in the choice 

process, but explicit choice set generation allows full control over desired properties of the 

generated paths, size and composition of the choice sets, and flexibility of the model 

specification. Then, travellers are assumed to maximise their utility (i.e., minimise their cost) 

and hence to choose their preferred path in the set of available paths.  

 Recent studies have given increasing attention towards the importance of the size and the 

composition of choice sets for path choice (see, for overviews, Bovy (2009) and Prato (2009)), 

whether they are to be used for model estimation or for prediction purposes. When used for 

model estimation, choice sets should facilitate statistical consistency and efficiency, while 

when used for prediction, they should contain all scenario-relevant alternatives (Van Nes et al., 

2008). As a result, it is crucial to generate a choice set including alternatives considered by 

travellers and excluding alternatives never considered (Prato and Bekhor, 2007; Bliemer and 

Bovy, 2008). However, there exists no objective definition of what constitutes a relevant path, 

and hence the assessment of the generated path choice sets relies upon the experience of the 

analyst rather than objective measures of choice set quality.  

 The literature in path choice shows that choice set generation has been extensively 

investigated for car users and small synthetic networks, and has drawn much less attention for 

public transport users and large-scale networks. Deterministic and stochastic techniques have 

been implemented to the generation of alternative paths for car users: variations of shortest 

path algorithms (e.g., Akgün et al., 2000; Hunt and Kornhauser, 1997; Lombard and Church, 

1993; Van der Zijpp and Fiorenzo-Catalano, 2005); application of heuristic rules (e.g., Ben-

Akiva et al., 1984; Azevedo et al., 1993; De la Barra et al., 1993); branch and bound 
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algorithms (Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 2006); single and doubly 

stochastic simulation approaches (e.g., Nielsen, 2000; Bekhor et al., 2006; Bovy and Fiorenzo-

Catalano, 2007); biased random walk algorithm (Frejinger et al., 2009); breadth first search 

with network reduction (Rieser-Schüssler et al., 2013). In metro networks, a heuristic approach 

pooling observations for the same origin-destination pair was applied in Santiago (Raveau et 

al., 2011). In multimodal networks, constrained enumeration was applied to a multimodal 

interregional hub-and-spoke transport corridor in the Netherlands (Hoogendoorn-Lanser et al., 

2007), and a simulation-based doubly stochastic choice set generation method was tested on 

the same corridor (Bovy and Fiorenzo-Catalano, 2007). Moreover, aggregation of the network 

into ‘route segments’ with consequent approximation of travel time and waiting time 

calculations was applied to evaluate existing choice set generation methods from smart card 

data in Singapore (Tan et al., 2014), and a Google Map procedure was used to generate 

alternative routes in the public transport network of Montreal (Eluru et al., 2012). 

 The current study contributes to the literature on public transport path choice by 

proposing, implementing and validating a timetable-based simulation approach for the choice 

set generation of paths in large-scale multimodal networks. The importance of the current study 

lies not only in the solution of the challenges of generating paths in a multi-layered public 

transport system, but also in the implementation on a large-scale network with multiple public 

transport modes. Moreover, the current study assesses path choice sets by comparing the 

generated paths with real-life path choices in the public transport system of the Greater 

Copenhagen Area as well as evaluating the ability to produce consistent parameter estimates in 

model estimation. The data consisted of 5,131 observations of actual path choices collected as 

part of the Danish Travel Survey, which is a one-day travel diary with high level of detail for 

the collection of public transport paths. For each observation, corresponding choice sets were 

generated and assessed for various configurations of the generation (utility) function, thereby 

enabling recommendations of good configurations. Notably, different levels of comparison 

measures between generated and observed paths (i.e., line level, stop level) were considered.  

 The next section introduces the proposed timetable-based simulation method to generate 

choice sets for public transport path choice and describes how the generated choice sets can be 

evaluated. Then, the case study is presented including the configurations tested and how the 
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generated choice sets were evaluated in the study. Next, the results of the assessment are 

presented, followed by a discussion and conclusions summarising the main findings of the 

study.  

2 PROPOSED CHOICE SET GENERATION IN MULTIMODAL PUBLIC 

TRANSPORT NETWORKS 

This section presents the timetable-based simulation method used to generate the path choice 

sets. Subsequently follows the introduction of methods for evaluating the choice set generation 

method and the choice sets generated. 

2.1 TIMETABLE-BASED SIMULATION METHOD TO GENERATE PATH CHOICE SETS 

The proposed method generates choice sets by repeated shortest path searches in a timetable-

based public transport time-space network graph (i.e., a diachronic graph with spatial as well as 

temporal component of edges and nodes, see e.g. Cascetta (2001)). Attributes on the edges of 

the graph and individual preferences are simulated, and the simulation induces that different 

unique paths may be generated by repeated application of the search, and the union of these 

unique paths constitutes the choice set. The method uses generation (cost) functions, and the 

utility (cost) on path i for individual m is expressed as: 

 im im im jm ijm im
j

C V x         (1) 

where Vim is the systematic utility of path i for individual m, xijm is an attribute j of path i for 

individual m, and βjm is a parameter that expresses the preference of individual m for the 

attribute j of path i, accounting for perception errors as well as elements not accounted for in 

the systematic part of the generation function. It should be noted that it is like if for each 

attribute j there exists a randomly distributed parameter βj accounting for taste heterogeneity 

across individuals m. The parameters are drawn once from the distribution of βj for each 

individual m in each iteration of the path search.  

 The generation of the paths is based on the assumption that the cost on path i is the sum 

of the costs on the edges belonging to path i in the time-space network graph: 

 
im

im jm ljm lm
l j

C x 
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where Γim represent the set of edges belonging to path i for individual m, xljm is the attribute j 

on edge l for individual m, and εlm is a random variable on edge l for individual m accounting 

for perception errors as well as elements not accounted for in the systematic part of the cost 

function. The assumption of additivity allows the paths to be consistently generated via 

shortest path searches in the graph: the individual specific parameters βjm are initially drawn 

before the search (in each iteration), and the impedances of the edges are then drawn as the 

shortest path tree is built (i.e., not all elements of the graph have to be simulated). In order to 

ensure consistency in the aggregation of the costs from edge- to path-level, it is necessary that 

(i) the error term follows a distribution which is additive in mean and variance, (ii) the error 

term has a variance proportional to the mean of the cost on the edge, and (iii) the cost function 

is specified as linear-in-parameters (Nielsen and Frederiksen, 2006). We use a gamma 

distribution for condition (i), we define a proportionality factor γ for condition (ii), and hence 

we have a distribution with mean mj lmjj
x   and variance mj lmjj

x   . We note that this 

specification induces (since the mean of the cost is dependent on the random variables βjm) the 

link error term to depend on individual m. 

 It should be noted that the simulation of the edge costs does not influence the network 

graph, but only the path search, namely the graph is the same from realisation to realisation. 

The network graph is based on the full (deterministic) timetable, and no vehicles or runs or 

passengers are thus simulated for the creation of the graph, only edge costs and preferences are 

simulated prior to the path search. 

2.2  METHODS FOR EVALUATION OF CHOICE SETS 

In lack of a direct objective measure of what constitutes a relevant path, choice set generation 

methods can be evaluated based on a combination of (i) the size of the choice sets generated, 

(ii) the ability to generate choice sets containing at least one path having high similarity to a 

corresponding observed path, and (iii) the ability to generate choice sets which facilitate 

consistent parameter estimates when used in the estimation of route choice models. 

 The first evaluation criterion relies on the analysis of the evolvement and size of the 

choice sets defined as the sets of unique paths generated by the repeated application of the 

simulation-based path-generation method. As timetable-based multimodal public transport 
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networks are very detailed, the distinction between unique paths can be done on numerous 

levels of detail: (i) departure level, where a path is only considered unique if no other paths use 

the same departures of the same lines to and from the same stops; (ii) line level, where a path is 

unique only if no other paths use the same lines to/from the same stops; (iii) stop level, where a 

path is unique only if no other paths use lines with the same stopping pattern between the same 

to/from stops; (iv) trip leg mode sequence, where a path is unique only if no other path uses the 

same sequence of modes for the different trip legs used. 

 The second evaluation criterion relies on the analysis of whether the applied choice set 

generation method is able to generate paths similar to the observed path of an individual. This 

is performed through a measure of coverage, equal to the share of observations for which at 

least one path within the generated choice set has an overlap with the observed path equal to or 

above a certain threshold. The overlap can, as the identification of unique paths, be calculated 

according to different levels of detail. Another dimension to consider when specifying the 

overlap is the unit of measure, which could be e.g. overlap-in-time, overlap-in-utility and 

overlap-in-length. Using stop level as the level of detail and overlap-in-length as the unit of 

measure, the overlap Oi,stop,m of the generated path i with the observed path of observation m 

can be computed as (Ramming, 2002): 

 , ,
mi

i stop m
m

L
O

L
   (3) 

where Lmi is the sum of length of overlapping elements between path i and the observed path 

for observation m, and Lm is the length of the observed path used by observation m.  

 This overlap measure can be computed for each generated path i for observation m, and 

let max
,stop mO  denote the best overlap (measured on stop level using overlap-in-length as unit of 

measure) among the paths generated for observation m. Then the coverage for an overlap-

threshold equal to δ can be computed as (Ramming, 2002): 

  
 max

,
1

M

stop m
n

stop

I O
Cov

M


 





  (4) 



 

 

54 

where M is the number of observations and I(·) is an indicator equal to 1 when the criteria is 

fulfilled and 0 otherwise.  

 A path choice set generation method should produce an array of relevant paths within a 

reasonable amount of iterations, and the observed path should be among these. Visual 

inspection combined with network knowledge could be used to evaluate whether 

counterintuitive paths are generated1. Such a procedure however could become tedious when 

having many observations and large-scale networks. Alternatively, whether redundant and/or 

possibly counterintuitive paths are generated could be evaluated at the aggregate level by 

comparing the increase in coverage to the increase in the average choice set size. Large 

increases in average choice set size combined with low improvements in coverage would 

indicate that redundant paths similar to already existing paths or counterintuitive paths were 

generated. An efficient algorithm is characterised by fast increases in coverage as well as 

average choice set sizes.  

 As the composition of the choice set influences the parameter estimates when used for 

model estimation purposes (e.g., Train, 2002; Van Nes et al., 2008), obtaining good coverage 

does not necessarily induce that parameters can be consistently estimated, for example 

alternatives might or not be similar to each other and choice sets might be different although 

reproducing at least once the chosen path. Consequently, the third evaluation criterion relies on 

the analysis of whether the proposed choice set generation method is able to generate path sets 

which include relevant alternatives with sufficiently varying attributes to facilitate statistically 

efficient estimates of model parameters. This analysis relies on the estimation of the same 

choice model on the choice sets generated at different stochasticity levels, and enables also the 

analysis of whether and to what extent the estimated parameters are stable across stochasticity 

levels.  

  

                                                 
1 In the study a counterintuitive path is defined as a path that is clearly less attractive than some other path 
connecting the same origin and destination because it has a considerably larger travel cost. 
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3 CASE STUDY: GREATER COPENHAGEN AREA 

This section presents the case study. Section 3.1 introduces the data sources used in the study 

and the data preparation, while section 3.2 presents the different tested configurations of the 

path choice set generation method. Section 3.3 describes how the generated choice sets were 

evaluated.  

3.1 DATA 

3.1.1 OBSERVED PATHS 

The current study used revealed preference data collected as part of the Danish Travel Survey, 

and the dataset consisted of 5,131 observed paths in the multimodal public transport network of 

the Greater Copenhagen Area. The survey is an ongoing questionnaire-based collection of one-

day travel diaries and associated respondents’ and households’ socio-economic characteristics. 

The respondents are a representative sample of the Danish population between 10 and 84 years 

of age who provide detailed information on all their trips during the day, and since February 

2009 answer specific questions investigating the path choice of trips using public transport. 

Respondents fill in information at a level of detail enabling the path to be reproduced by the 

analyst while still being fairly easy to fill in by the respondent. Addresses and purposes at start 

points, change points and end points of the trips, as well as detailed information about the 

modes used en route, are collected in the survey: 

 Walk, bike, car, etc. 

o Length and travel time 

 Bus 

o Waiting time, bus line, length and travel time 

 Suburban train (S-train) 

o Waiting time, boarding station, S-train line, alighting station, length and travel time 

 Train, Metro 

o Waiting time, boarding station, alighting station, length and travel time 

 In order to perform comparisons, the observed paths were map matched to the same 

digital network representation as the one used for the choice set generation. The paths were 

mapped at the line level identifying the line and the stops where boarding and alighting the 
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different public transport modes occurred, but omitting identification of which actual departure 

was used. This map-matching level was chosen due to uncertainties regarding the stated travel 

times and departure times as well as possible delays on the day the paths were observed. The 

mapping has been documented in Rasmussen (2010) (see, for documentation in English, 

Anderson and Rasmussen, 2010).  

 Figure 1 presents the characteristics of the observed paths in the data set used, namely 

trip purpose, trip length, and number and mode of trip legs for multimodal paths. Most 

observations are either commuting or leisure trips, whereas only a few business trips have been 

observed in this representative sample of trips of the Danish population. Notably, trip 

characteristics appear similar between commuting and business trips, while education trips are 

similar with only a higher share of shorter trips below 10 km. In the Greater Copenhagen Area, 

the average commuting distance for public transport users is 21.0 km per direction, which is 

slightly higher than the average 17.1 km for the trips in the dataset. Leisure trips are generally 

shorter and consist of only one bus trip leg (53% of the observations), while other purposes 

observe less bus-only one-trip-leg trips (38%-42% of the observations). 

 
Figure 1 – Characteristics of the observed public transport trips 
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3.1.2 NETWORK DATA 

The used digital network represents the Greater Copenhagen Area, in which approximately 2 

million people live. The area is served by an array of different public transport modes, 

including numerous bus lines with different levels of service (i.e., regular, frequent, express, 

rapid), two metro lines, several Intercity and Regional train lines, seven S-train lines and 

various local train lines. The digital network representation is timetable-based and includes the 

departures of all the public transport in the area, namely 479 lines, 1,677 line variants, 5,652 

stops and 635,027 daily stop departures. The data originates from The Danish National 

Transport Model (currently under development at DTU Transport), and the schedule is a digital 

representation of how the real-life public transport network was scheduled on November 10, 

2010. Transfers are available between lines at every stop, but the most important transfers (e.g., 

between bus and train at the Copenhagen Central Station) are also represented in the graph 

through 560 transfer edges that are defined via a length-dependent impedance expressing 

walking time between the connected stops. 

 The analysis evaluates the proposed choice set generation method through the generation 

of choice sets corresponding to the observed paths. Therefore the start and end locations 

(addresses) of the observations were introduced into the network and linked to relevant public 

transport stops by connectors. The simplest approach to generate connectors would be to 

generate connectors to the nearest stop only. However, in order to facilitate the possibility of a 

wide array of alternative paths, a new approach to generating connectors between trip start and 

end locations and public transport stops was developed as a part of this study. The approach 

aims to generate connectors to all stops considered relevant by travellers, and thus connectors 

were generated according to the following criteria: (i) the 5 nearest bus stops served by bus 

lines with low service level within a distance of 2,500m; (ii) the 5 nearest bus stops served by 

bus lines with high service level within a distance of 5,000m; (iii) the 5 nearest train stations 

within a distance of 20km; (iv) the nearest bus stop on each of the A-, S or E- bus lines (high 

service level bus lines) within 20 km if not already generated by step (ii). The travel time on 

the connectors was calculated by using actual network distances. Summarising, the multimodal 

public transport network used for choice set generation consists of 5,652 stops, 560 transfer 

edges, 202,035 connector edges, 635,027 public transport run edges between stops. 
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3.2 CONFIGURATION OF THE TIMETABLE-BASED SIMULATION METHOD TO GENERATE PATH 

CHOICE SETS  

In the current study, the detailed generation (cost) function used for generating the paths 

specified the cost of alternative path i for observation m at the path level as:  

 

, , , , , ,

, , , , , , , ,

, , , ,

im im im walktime m walktime im waittime m waittime im changepen m change im

conntime m conntime im waitzone m waitzone im IVT train m IVT train im
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IVT metro m IVT metro im im
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 (5) 

where for path i and observation m TTwalktime,im and TTwaitime,im are walking and waiting time 

when transferring, Nchange,im is the number of transfers, TTconntime,im is the time spent walking 

between the origin/destination and the first/last public transport stop, TTwaitzone,im is the schedule 

delay, and TTIVT,train,im, TTIVT,ICtrain,im, TTIVT,S-train,im and TTIVT,bus,im are in-vehicle times spent 

respectively in regional trains, IC-trains, S-trains and buses. The corresponding parameters are 

distributed with mean βj and variance α·βj where α is a scale parameter, while εim is the error 

term constituted as the sum of error terms drawn at the edge level.  

 In order to be able to recommend good formulations, three formulations of the generation 

(cost) function (5) were tested. To also be able to recommend levels of stochasticity 

introduced, each of these formulations was tested with nine levels of the variances of the 

distributions of error components and/or error term. This induced in total 27 configurations to 

test for each of the 5,131 observations. The choice of formulations to investigate was based on 

findings by Rasmussen (2010), who tested six different formulations on a limited number of 

observations. Consequently, in this present study, path choice sets were generated for three 

different formulations of the generation function (5): 



 

 

59 

 ErrTermOnly: all β’s not randomly distributed across the population, and εim Gamma 

distributed. 

 ErrCompAll: all β’s Log-Normal distributed, and no consideration of εim in the 

generation function. 

 ErrCompErrTerm: all β’s Log-Normal distributed, and εim Gamma distributed. 

 The distributions were chosen in order to avoid counterintuitive draws while still 

maintaining the theoretical assumptions: (i) negative values cannot be drawn from the Log-

Normal distribution, securing to avoid counterintuitive cases where longer travel time 

generates lower cost; (ii) the Gamma distribution is additive in mean and variance and the 

variance is proportional to the mean; (iii) the consistency between the edge and the path level is 

maintained. Furthermore, the Gamma distribution has a finite support, whereby the risk of 

some alternative to have negative cost due to the error term can be avoided.  

 The nine levels of the scale parameters were defined based on starting values found in 

Rasmussen (2010) (see also Larsen et al., 2010) and are presented in Table 1. Consequently, 

ErrCompErrTerm_7 refers to a configuration where all parameters and the error term are 

distributed with a scale of α = γ = 1.5. Rasmussen (2010) tested the levels denoted by _1, _2 

and _3, and found that coverage increases with increasing size of the scale parameters. The 

present study additionally tested cases where the scale parameters are considerably higher in 

order to find the level from which the coverage does not continue to improve and possibly 

becomes worse by increasing the level of stochasticity. The parameters were drawn for each 

observation in each iteration, whereas the error terms were drawn at the edge level for each 

observation in each iteration. The respondents could report the departure time in 5 minute 

intervals. Accordingly, to account for this to allow different connections, a random departure 

time within a 10 minute interval around the recorded departure time was drawn before each 

path search. 

Table 1 – Size of parameter that scale the variance of the distribution 

Level of stochasticity _1 _2 _3 _4 _5 _6 _7 _8 _9

γ 0.05 0.10 0.15 0.20 0.50 1.00 1.50 2.00 5.00

α 0.025 0.05 0.10 0.20 0.50 1.00 1.50 2.00 5.00
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 The means of the parameter values were based upon results estimated in Nielsen (2000), 

and shown in Table 2.  

Table 2 – Parameter values in the generation function (source: Nielsen, 2000) 

βwalktime βwaittime βchangepen,i βconntime βwaitzone 

38.0 DKK/h 38.0 DKK/h 7 DKK/change 45.0 DKK/h 16.0 DKK/h

βIVT,train βIVT,IC-train βIVT,S-train βIVT,bus βIVT,metro 

27.0 DKK/h 27.0 DKK/h 27.0 DKK/h 35.4 DKK/h 21.6 DKK/h
 

 For each observation and configuration, 200 paths (i.e. 200 iterations of the path search) 

were generated between the corresponding origin and destination points of the observation. In 

total, 27,707,400 shortest path searches were conducted in the large-scale network (200 

iterations, 27 configurations, 5,131 observations).  

3.3 EVALUATION OF CHOICE SETS 

The generated choice sets were evaluated by their ability to generate unique paths, reproduce 

the observed paths, and produce consistent parameter estimates when used in model 

estimation. As described, there are several levels of detail on which the paths could be 

distinguished and the overlap computed, and this section describes the choices made for the 

current case study.  

 The multimodal public transport network in the Greater Copenhagen Area is complex by 

often providing numerous different alternatives using the same sequence of modes for the trip 

legs used. These alternatives might however differ considerably from each other in terms of 

attributes such as e.g. travel times, and will need to be distinguished as different unique 

possibilities. Consequently, distinguishing between unique paths on the level of trip leg mode 

sequence was not considered attractive in this present study. By being timetable-based, the 

available digital representation of the network allowed distinguishing paths at the departure 

level. The generated paths were however to be compared to observed paths mapped at the line 

level, and so there was no need to distinguish between generated paths at the departure level. In 

this study, the distinction between paths has thus been done at the line level. 
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 This study calculated the overlap between paths on the aggregate stop level for the public 

transport trip legs (excluding access/egress), as this is less sensitive to the correctness of the 

input data. As an example, several S-train lines share the same alignment and stopping pattern 

through the city of Copenhagen, and people might not remember which line they used for trips 

between stops in the segment, and may consequently report the wrong line. Additionally, using 

the stop level would lower the sensitivity towards delays experienced on the day of the 

reported trip, as such delay was not represented in the digital network representation used for 

the choice set generation. This study adopted length as the unit of measure for the overlap, and 

the coverage could thus be computed as in equation (4).  

 Using the observed paths and the corresponding choice sets generated, a choice model 

was estimated for each of the levels of stochasticity used. This was done in order to evaluate 

the ability to produce statistically efficient parameter estimates and to test whether these were 

stable across stochasticity levels. The study did not explore several different specifications of 

the model to be estimated, but rather used a Path Size Logit model formulation which in 

Anderson et al. (2014) was found to perform well. The utility function included in-vehicle 

travel time in different modes of transport, access/egress times, walking and waiting times 

when transferring, number and type of transfers, headway between departures dependent on 

time-of-day as well as correction for path overlapping using the PSC correction term presented 

in Bovy et al. (2009). Biogeme was used to conduct the maximum likelihood estimations 

(Bierlaire, 2009). 
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4 RESULTS 

4.1 CHOICE SET SIZE 

Ideally, the number of unique paths would stabilise after generating a variety of paths, 

indicating that no counterintuitive and redundant paths were added to the choice sets. The path 

generation would then be terminated when this ‘stable’ situation was reached. With a high 

level of stochasticity, the simulation however seemed to continue to generate new unique paths 

even after 200 iterations, whereas the choice set composition seemed to stabilise for the 

smallest levels of stochasticity. This was expected, as introducing more randomness in terms of 

larger variance around the mean might produce paths with minor deviations to the actually 

most attractive path as well as cause some obviously unattractive paths to become attractive. 

 The size of the generated choice sets is highly dependent on the formulation and the size 

of the stochasticity. This is indicated in Table 3, which lists various key figures describing the 

number of unique paths in the choice sets. As can be seen, the combined formulation generated 

the largest choice sets. Comparing formulations ErrTermOnly and ErrCompAll, the latter 

seemed to generate the largest choice sets for the lowest stochasticity levels. The opposite was 

observed in the cases with high level of stochasticity.  

Table 3 – Choice set size characteristics at iteration 40 and 200 

  ErrTermOnly 

  Iteration _1 _2 _3 _4 _5 _6 _7 _8 _9 

Min 
40 1 1 1 1 1 1 1 1 2

200 1 1 1 1 1 1 1 2 5

Mean 
40 2.9 3.5 4.5 5.9 9.2 13.6 17.2 20.0 28.9

200 3.8 5.0 6.9 10.2 19.7 36.0 51.6 65.7 117.8

Median 
40 2 3 4 5 8 12 16 20 31

200 3 4 5 8 15 29 45 60 126

Max 
40 18 20 28 32 37 40 40 40 40

200 31 39 61 84 132 181 192 198 200
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  ErrCompAll 

  Iteration _1 _2 _3 _4 _5 _6 _7 _8 _9 

Min 
40 1 1 1 1 1 1 1 1 1

200 1 1 1 1 1 1 1 2 4

Mean 
40 3.7 4.7 5.5 6.1 8.4 10.2 11.2 11.8 13.6

200 5.3 7.5 9.3 10.9 16.9 22.5 26.2 28.3 34.4

Median 
40 3 4 5 5 8 10 11 11 13

200 4 6 8 9 15 20 24 26 32

Max 
40 20 22 25 27 30 32 34 33 36

200 35 51 54 69 86 105 121 128 143

                 

ErrCompErrTerm 

Iteration _1 _2 _3 _4 _5 _6 _7 _8 _9 

Min 
40 1 1 1 1 1 1 4 3 3

200 1 1 1 1 2 4 7 8 9

Mean 
40 4.6 6.3 8.0 9.9 15.4 20.4 23.1 25.0 29.2

200 7.4 11.3 16.0 22.5 43.5 67.6 82.6 93.2 118.7

Median 
40 4 5 7 9 15 20 23 25 29

200 6 9 13 19 39 65 80 92 118

Max 
40 23 31 32 34 39 40 40 40 40

200 47 76 100 135 172 187 190 200 200
 

 In general, higher levels of the stochasticity implied larger choice sets, especially for the 

two formulations including a distributed error term. This indicates that, when adding high 

stochasticity, the method becomes very efficient in terms of generating unique paths to the 

choice sets. Larger choice sets for higher stochasticity were also observed in Figure 2, which is 

an example of a commute trip between a suburb and the city centre of Copenhagen. As can be 

seen, the observed path is represented in the choice set for the different levels of stochasticity 

shown (formulation ErrCompErrTerm).  
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Figure 2 – Example of generated choice set with ErrCompErrTerm formulation and selected scale parameters 
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 Figure 2 indicates a general tendency that has been verified by visual inspection in 

Geographic Information System of the choice sets generated for numerous observations: when 

using a high level of the stochasticity and after a number of iterations, new unique paths 

generated were redundant or counterintuitive. This suggests that it is undesirable to iterate until 

the number of unique paths stabilises. 

4.2 COVERAGE 

The observed path should be represented among the set of generated paths. Therefore, the 

improvement in coverage could supplement the choice set size as an additional indicator of 

performance. Applying an overlap threshold of 80%, a value often used in the literature (e.g., 

Ramming, 2002; Prato and Bekhor, 2007), induced the results illustrated in Figure 3. 

 
Figure 3 – Coverage with overlap threshold of 80% (stop level) for configuration _1, _5, _6 and _9 for all three 

formulations 
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 The timetable-based simulation method produced in general very high coverage, 

especially when performing 40 iterations or more. Complete convergence was not seen within 

the 200 iterations, however the increment was rather small after 40 iterations. Figure 4 shows 

that setting a higher threshold of the overlap reduced the coverage, as expected, but the levels 

were still high, even for a threshold of 100%. 

 
Figure 4 – Coverage of the timetable-based simulation for choice set generation (200 iterations) for configuration 

_1, _5, _6 and _9 for all three formulations 

 Rasmussen (2010) found that increasing the size of the scale parameter of the variance of 

the distributed terms does also increase the coverage. This was verified in the present analysis, 

and found valid even when applying very large scale parameters. However, the increase in 

coverage by increasing the scale parameters from 1 (configurations _6) to 5 (configurations _9) 

only induced approximately a 2 percentage-point increase in the coverage. This increase was at 

the cost of generating counterintuitive paths when using higher levels of stochasticity.  
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 When comparing the coverage across the formulations, it can be seen that the 

formulation ErrCompErrTerm outperformed the two other formulations at low as well as high 

levels of stochasticity (see Table 4). This indicates that accounting for taste heterogeneity by 

adding distributed parameters to the single stochastic formulation (widely used in car choice 

set generation) improves the coverage. By comparing Tables 3 and 4, it can be seen that 

formulation ErrCompAll not only generated more unique paths, but also produced better 

coverage than formulation ErrTermOnly when applying low stochasticity (after 40 as well as 

200 iterations). Accordingly, if only low variance is to be applied to either the taste parameters 

or a distributed error term, the best results in terms of coverage are generated by applying 

distributions to the parameters. The opposite was seen when applying high stochasticity. 

Table 4 – Coverage levels obtained, comparison across formulations 

  Iteration 40 Iteration 200 

    
Low 

stochasticity 
High 

stochasticity
Low 

stochasticity 
High 

stochasticity

Formulation 

ErrorTermOnly 78-83% 92-94% 81-86% 95-97%

ErrCompAll 84-88% 90-91% 87-91% 93-95%

ErrCompErrTerm 86-90% 94-95% 89-93% 97-99%
 

 The coverage grew, dependent on formulation and size of variance, between 2.7 

percentage points and 4.5 percentage points when doing 200 iterations rather than 40 iterations. 

This gain was however at the cost of a 5 fold increase in computation time and, in cases with 

very high variance, larger choice sets including counterintuitive paths.  

4.3 MODEL ESTIMATION RESULTS 

The Path Size Logit choice model with the utility function verbally described in section 3.3 

was estimated for the choice sets generated by the different variants of formulation 

ErrCompErrTerm. The observed path was added to the choice set if not generated by the 

choice set generation method. The focus was on the ErrCompErrTerm formulation, as it was 

found to perform best in terms of coverage. In section 4.1 it was established that the 

configurations with high stochasticity produced counterintuitive paths. In order to further 

investigate the influence of the presence of counterintuitive paths on the model estimation 

results, an additional level of stochasticity, denoted as ErrCompErrTerm_10, with α = γ = 10 
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were tested. Table 5 lists the parameter estimates scaled to the parameter for in-vehicle time for 

bus, thereby representing the rates of substitution to 1 minute of travel time spent in bus. Note 

that the PSC parameter estimate is not scaled, as such a measure does not have a direct 

behavioural interpretation. The table also lists the value of the t-test for the parameter 

estimates. 

Table 5 – Comparison of estimates of Path Size Logit models 

_1 _3 _5 _7 _9 _10 

Index scaled t-test scaled t-test scaled t-test scaled t-test scaled t-test scaled t-test 

Headway 

Up to 6 min 1 -15.08 23.82 -4.97 23.12 -2.98 21.29 -3.74 22.84 -3.49 23.23 -3.03 20.94

Above 6 min 2 1.19 -6.76 0.45 -8.08 0.31 -9.34 0.26 -8.24 0.23 -7.69 0.35 -11.16

In-vehicle time 

IVT Bus 3 1.00 -8.68 1.00 -17.20 1.00 -25.96 1.00 -26.36 1.00 -27.39 1.00 -27.78

IVT Local train 4 1.13 -4.24 1.10 -11.38 0.94 -12.38 0.93 -9.97 0.94 -9.25 0.96 -10.05

IVT Metro 5 0.38 -1.48 0.57 -6.29 0.52 -8.86 0.50 -7.97 0.53 -9.03 0.49 -8.64

IVT Regional/IC-train ≤ 20 km 6 4.29 -12.51 2.36 -17.36 1.89 -19.54 1.66 -15.95 1.45 -14.75 1.48 -15.06

IVT Regional/IC-train > 20 km 7 0.26 -1.10 0.60 -7.75 0.69 -11.73 0.74 -10.92 0.75 -11.19 0.74 -11.22

IVT S-train 8 0.83 -5.90 0.84 -14.01 0.83 -21.15 0.79 -19.51 0.78 -20.01 0.79 -21.01

TT Access/Egress 9 -0.62 4.37 1.11 -8.04 1.63 -19.71 1.55 -20.44 1.65 -23.60 1.89 -27.00

Change 

Walking time 10 -3.84 9.42 -0.44 3.33 0.30 -3.85 0.44 -5.53 0.67 -8.50 0.75 -8.97

Waiting time 11 -4.88 22.86 -0.62 13.88 0.15 -4.97 0.44 -13.33 0.53 -17.05 0.48 -16.97

Bus to bus penalty 12 26.41 -11.67 16.33 -16.64 14.92 -26.39 10.84 -22.01 7.19 -17.06 9.69 -21.21

Bus to train penalty 13 35.89 -14.71 18.75 -18.38 15.50 -25.08 9.83 -16.39 5.00 -9.37 6.86 -12.62

Train to bus penalty 14 41.53 -16.42 20.83 -20.00 16.88 -27.09 11.57 -19.09 6.51 -12.35 7.94 -14.31

Train to train penalty 15 13.63 -6.91 10.75 -13.43 11.16 -24.98 7.47 -18.53 4.64 -13.81 6.96 -18.16

Path Size factor 

PSC [estimated parameter, non-
scaled] 

16 0.145 3.15 0.525 13.29 0.612 18.76 -0.065 -2.64 -0.643 -24.05 -0.353 -11.30

Number of estimated params: 16 16 16 16 16 16 

Number of observations: 5,131 5,131 5,131 5,131 5,131 5,131 

Null log-likelihood: -9,785.6 -13,389.4 -18,557.5 -22,179.8 -24,278.9 -24,807.5 

Final log-likelihood: -8,235.3 -11,174.9 -13,253.3 -15,791.2 -13,748.9 -10,783.0 

Likelihood ratio test: 3,100.5 4,428.8 10,608.3 12,777.1 21,060.1 28,049.1 

Adjusted rho-square: 0.157 0.164 0.285 0.287 0.433 0.565 
 

 For configuration _1 and _3 (i.e. low variance) some parameters were non-significant 

and/or non-reasonable, e.g. with a decrease in the cost for increasing walking time. From 

configuration _5 onwards the parameters were all highly significant and with logical signs. 

Rates of substitution indicates as reasonable to associate less nuisance to 1 min. of travel in 

train (local train, S-train, Metro) than by bus, as these have a higher level of service and 
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provide better possibility to work while travelling. However, the estimates indicate that, for 

short trips, one minute of travel on a regional or IC train is associated with higher nuisance 

than when travelling by bus. One possible explanation of this could be the somewhat more 

difficult boarding/alighting of the trains and the lower accessibility of trains’ platforms. 

Another finding was that travellers prefer, reasonably, to travel with a high frequency line, 

which is seen through a negative parameter value for short headways.  

 Though highly statistically significant, it seems that the rate of substitution associated to 

travel time and headway were not stable across the cases with lower stochasticity, but only 

became stable after a higher level of stochasticity introduced. This is also reflected by 

overlapping confidence intervals in Figure 5, which shows (for high variance cases) 95% 

confidence intervals associated to the rates of substitution (the parameter indices are defined in 

Table 5). 

 From Table 5 it can be seen that the rates of substitution associated to the number of 

transfers do not appear stable across stochasticity levels. Figure 5 also shows highly non-

overlapping confidence intervals of these rates of substitution for configurations _7, _9 and 

_10. However, in general these configurations found that changing to a bus (from train or bus) 

is associated with a higher nuisance (corresponds to 6.5-11.6 min. of in-vehicle bus travel time) 

than when changing to a train (from train or bus, corresponding to 4.6-9.8 min. of in-vehicle 

bus travel time). This seems reasonable, as train stations and train platforms typically provide 

better level-of-service than bus stops (e.g., better shelter for weather).  

 The PSC parameter is also highly significant in all cases and the negative sign of the 

parameter estimate (for all cases but _1, _3 and _5) was also expected. However, when 

observing Table 5 and Figure 5 it can be seen that the parameter estimate were highly non-

stable across stochasticity levels, although given the dependence of the PSC on the choice set 

composition, it seems reasonable that this specific term will not be consistently estimated 

across choice set specifications.  
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Figure 5 – Confidence intervals of the rates of substitution for the Path Size Logit model estimation on 

stochasticity levels _7, _9 and _10 for formulation ErrCompErrTerm  

5 DISCUSSION 

The current study investigated the generation of path choice sets in a complex real-life 

multimodal public transportation network. The analysis focused on 5,131 actual choices of 

public transport users in the Greater Copenhagen Area and the choice set quality was evaluated 

against these revealed preference data.  

 The study implemented a timetable-based simulation method for choice set generation of 

public transport paths. The model is very flexible regarding the configuration of the generation 

(cost) function, as it can capture similarities across alternatives and perception errors through a 

distributed error term as well as taste heterogeneity through distributed parameters. Various 

configurations were tested in order to be able to give recommendations. The cost function 

included in-vehicle time for all the public transport modes available in the Greater Copenhagen 

Area (i.e., bus, metro, train), waiting and walking (connecting) time at the stations, the number 

of transfers as well as network-distance-based access/egress time from/to the 

origin/destination.  
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 Results show that the proposed timetable-based simulation method for choice set 

generation in general produced very high coverage, especially when using a high level of 

stochasticity. Adding parameters drawn from a log-normal distribution to account for taste 

heterogeneity improved the results considerably compared to the traditional single stochastic 

model with a gamma distributed error term. Distributing the parameters without having a 

distributed error term also generated good results, as it actually performed better than the 

traditional single stochastic formulations at low levels of stochasticity. The formulation was 

however outperformed by the doubly stochastic formulation, which generated the best results 

among the three formulations tested. When evaluating the coverage, it was important to bear in 

mind that while high coverage should be sought, it is usually not possible to obtain 100% 

coverage. This is due to possible (non-traceable) errors in the observed data as well as 

deviations between the real-life situation when collecting the observed data and the available 

network data. When comparing to coverage levels obtained elsewhere in the literature (e.g., 

Ramming, 2002; Prato and Bekhor, 2007), it was confirmed that very high coverage levels was 

found using the doubly stochastic formulation of the timetable-based simulation method. It 

should be noted that results are not directly comparable across different studies as different 

data sources (networks, observations) and methods were used. Additionally, results are highly 

dependent on the chosen overlap threshold as well as aggregation level (e.g., departure level, 

trip leg mode sequence). The choice of this should depend on, among others, the level of detail 

as well as accuracy of the available data. However, the current analysis indeed showed high 

coverage levels even at very high overlap thresholds and for both line level and stop level. 

Future research could seek to apply some of the numerous alternative methods for choice set 

generation proposed in literature (section 1) on the network and observations, thereby 

facilitating consistent comparison across methods. 

 For all formulations, the coverage seemed to increase when increasing the level of 

stochasticity. The improvements were small at high levels of stochasticity though, and our tests 

showed that adding too much stochasticity generated large choice sets with counterintuitive 

paths containing geospatial loops. Consequently, adding stochasticity to improve coverage 

should be done with parsimony. For the lowest levels of stochasticity, the size of the choice 

sets did not grow very fast, indicating that the same paths were generated over and over. For 
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the highest levels of stochasticity, large choice sets were generated within a reasonable amount 

of iterations, corresponding to a very high efficiency in terms of generating alternatives. The 

observed path was also often among the initial alternatives generated to the choice sets, which 

was seen through a very high coverage level at 40 iterations. Actually, using 200 iterations 

rather than 40 iterations, at the cost of a 5-fold increase in calculation time, only improved the 

coverage marginally.  

 The study found that large choice sets containing counterintuitive paths were generated 

when increasing the scale parameters above 1. Such paths are not only behaviourally 

unrealistic, but may also influence the subsequent step where the choice sets are typically used 

for either estimation or prediction purposes. When used for prediction, the large choice sets 

could potentially pose a computational challenge if a path-based solution algorithm is used. 

When used for estimation, the study found statistically significant and reasonable parameter 

values when using choice sets generated at high stochasticity levels. Furthermore, apparently 

adding counterintuitive paths did not change the estimates considerably for the rates of 

substitution related to time. However, the rates of substitution associated to the number and 

type of transfers, though highly significant and at a logical level, did not stabilise above a 

certain stochasticity level. Accordingly, the parameter estimates for transfers are apparently 

highly dependent on the composition of the choice set.  

 The value of the rate of substitution of changing reported in other revealed preference 

studies also varies greatly between studies, ranging from 3.8 (relative to in-vehicle metro travel 

time) in Raveau et al. (2011) to 22.4 (relative to in-vehicle train travel time) in Vrtic and 

Axhausen (2002). None of the studies reporting evidence on the value of changes has 

investigated in detail the implication of varying choice set composition on the estimated 

values, often also because the choice set composition effect was simply not considered. An 

interesting future research direction would be to investigate whether the fluctuation found 

arises due to the discrete nature of the variable(s) with values typically in the lower end of the 

scale (0, 1 or 2). It would also be interesting in a future study to account for trip purpose in the 

specification of the generation function as well as in the choice model estimation, to see 

whether this would improve the coverage even further and possibly generate better model fit 

and more stable estimates for the parameters associated to changes. 
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 Consistently with the existing route choice literature, the present study did not address 

the issue of consistency across the choice set generation component and the choice model 

component (estimation or prediction). Moreover, the specification of the generation function 

and the utility function of the estimation process were different: the functions contained 

different components (e.g. the utility function contained path-based attributes such as PSC 

correction), and the stochasticity and the size of this were specified differently. Some of these 

components and the defined stochasticity does not easily break down from path- to link-level, 

which are typically required by choice set generation methods as these adopt search-tree 

algorithms in the generation of paths. Ideally, theoretical consistency should be ensured across 

the choice set generation component and the choice model component by using the same 

specification of the utility and generation function. Only thereby does the ‘hypothesis’ about 

traveller preferences (used in the path generation) become consistent with the preferences 

actually estimated based on these. The development of methods which ensure this consistency 

across model components is an important future research direction. 

6 CONCLUSIONS 

This study investigates actual path choices of public transport users and assesses choice set 

quality against these. The study illustrates that the timetable-based simulation method for 

choice set generation of public transport paths is applicable to large-scale networks, produces 

good results in terms of coverage and the facilitation of consistent parameter estimates when 

the choice sets are used for estimation. It was found that the level of the introduced 

stochasticity should be defined with parsimony, as adding stochasticity translates into the 

generation of redundant and counterintuitive paths after a certain level. An interesting finding 

is however that the estimation results are not affected considerably by the presence of these 

(with the exception of the parameters associated to changes). Adding variability across people 

improved the results considerably, and the best results were seen with the doubly stochastic 

formulation when the level of the stochasticity introduced was high, although not too high. 
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Abstract: GPS data collection has become an important means of investigating travel 

behaviour. This is because such data ideally provide far more detailed information on route 

choice and travel patterns over a longer time period than possible from traditional travel survey 

methods. Wearing a GPS unit is furthermore less requiring for the respondents than filling out 

(large) questionnaires. It places however high requirements to the post-processing of the data. 

This study developed and tested a combined fuzzy logic and GIS-based algorithm to process 

raw GPS data. The algorithm is applied to GPS data collected in the highly complex large-

scale multi-modal transport network of the Greater Copenhagen Area. It detects trips, trip legs 

and distinguishes between five modes of transport. The algorithm was validated by comparing 

with a control questionnaire. This showed that it (i) identified corresponding trip legs for 82% 

of the reported trip legs, (ii) avoided classifying non-trips such as scatter around activities as 

trip legs and (iii) identified the correct mode of transport for more than 90% of trip legs. The 

method thus makes it possible to use GPS for travel surveys in large-scale multi-modal 

networks. 

Keywords: GPS data processing; revealed preference data; multimodal travel survey; 

handheld GPS; GIS 
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1 INTRODUCTION 

Over the last 20 years Global Positioning Systems (GPS) have been applied in various 

investigations of transport-related issues. These applications include, among others, (i) 

evaluation of system performance, such as measuring historical and real-time congestion and 

flow levels (Quiroga and Bullock, 1998; Quiroga, 2000; Li et al., 2004; Herrera et al., 2010), 

(ii) analysis of travel behaviour, such as response to road pricing schemes (Nielsen, 2004; Liu 

et al., 2010), and (iii) estimation of route choice parameters in route choice models (Rich and 

Nielsen, 2007; Bierlaire et al., 2013; Prato et al., 2014).  

 In recent years much effort has been made to investigate the use of GPS devices as the 

data source for travel surveys (Wolf, 2000; Gong et al., 2011; Bolbol et al., 2012; Stopher et 

al., 2005, etc.). When compared to traditional travel diaries, collecting data via GPS devices 

ideally provides the investigator with far more detailed information on travel times, used routes 

and locations of activities. Another advantage of using GPS data is that it is not dependent on 

individuals’ (possibly mis-) perception of travel time, travel distance and departure time 

(revealed preferences rather than stated preferences). In traditional travel diaries there is often a 

common problem of underreporting of trips (e.g., Stopher et al., 2007; Forrest and Pearson, 

2005). This problem is likely to be reduced when using GPS as all movements of participants 

are logged (Stopher et al., 2008). Additionally, far less effort is required by the respondents as 

answering time-consuming questionnaires can be avoided. This enables larger sample sizes and 

data collection over a longer time period per respondent. 

 Today GPS units are sufficiently accurate, lightweight and have long enough battery-life 

to make multi-day individual-based data collection possible for all conducted trips (e.g. 

Stopher and Shen, 2011; Gong et al., 2011; Bolbol et al., 2012). Such a data collection 

facilitates complete analyses and better understanding of individuals’ travel patterns. This 

includes choice of mode of transport, combination of modes, route choices in multi-modal 

transport networks and day-to-day variations.  

 Collection of GPS data generates very large data sets, containing millions of GPS logs 

and a lot of non-relevant data in the form of e.g. scatter. Manual processing of such data is 

highly unfeasible. The possibility to utilize such data thus relies heavily on the availability of 
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computer-based analysis tools which automatically process the raw dataset and convert the 

processed data into a format which is usable in the subsequent analyses of e.g. mode and route 

choice and travel patterns. This paper describes the results obtained by applying the existing 

POSDAP (2012) algorithm to a multi-day individual-based GPS data set collected among 

families in the Greater Copenhagen Area. The POSDAP (2012) was developed by Schüssler 

and Axhausen (2009) and identifies trips, trip legs and mode used. In the present paper we 

extend this method by proposing a method that utilises a Geographical Information System 

(GIS) to identify the mode used. The extension additionally includes algorithms to detect and 

correct illogical mode chains and transfers. To enable comparisons this extended method was 

tested on the Greater Copenhagen Area case study. Corresponding traditional interview-based 

travel survey data were collected for each of the respondents for one of the days in the survey 

period. This made it possible to validate the results of the trip and mode identification 

algorithms. 

 Section 2 of the paper presents a review of the existing literature focused on using GPS 

as a travel survey method. The case study is introduced in section 3, while section 4 presents 

the method used to post-process the GPS data. Section 5 reports the results obtained by 

applying the methods to the case study and discuss further research directions. Section 6 relates 

the results to findings in similar studies and concludes the work. A preliminary version of the 

work was presented in Rasmussen et al. (2013).  

2 LITERATURE REVIEW 

The literature review is divided into two parts. Section 2.1 focuses on how GPS devices have 

been used in travel surveys, whereas section 2.2 focuses on approaches for post-processing raw 

GPS data. 

2.1  GPS IN TRAVEL SURVEYS 

Technology limited the first travel surveys using GPS to only being vehicle-based, as the 

devices were large and the power consumption was high (Wagner et al., 1996; Yalamanchili et 

al., 1999). These early studies sought mainly to supplement telephone-based travel surveys by 

collecting additional data to e.g. identify detailed route choices, verify exact time of day as well 
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as detect unreported trips (Wolf, 2000). Additional trip information such as trip purpose was 

specified by the respondents when starting a trip (Yalamanchili et al., 1999; Du and Aultman-

Hall, 2007). This was often done on a connected personal digital assistant (PDA). 

 Draijer et al. (2000) was the first study to expand a GPS-based data collection to support 

several modes of transport. Respondents were asked to wear a GPS and a PDA device on all 

trips. There was however a consistent underreporting of trips due to the size and weight of the 

devices (approx. 2kg). These trips were walking, cycling and public transport trips as well as 

trips with the purpose of shopping and visiting friends. The survey design demanded a constant 

effort from the participants, as the respondents were asked to turn the device on/off when 

starting/ending a trip and answer questions on the PDA. Several studies have combined GPS 

traces with additional information gathered by a travel survey questionnaire. Among these are 

the studies by de Jong and Mensonides (2003), Bohte and Maat (2009) and Tsui and Shalaby 

(2006). These used internet-based questionnaires where respondents needed to confirm the 

trips identified by the trip identification algorithm. As GPS devices have become smaller and 

lighter, multi-modal GPS based travel surveys have become extensively applied as travel 

survey method.  

 Much has been done to reduce the effort needed by the respondents, and many studies 

today therefore do not ask participants to provide trip information en-route (Schüssler and 

Axhausen, 2009; Stopher and Shen, 2011). This however sets higher requirements to the post-

processing algorithms as these need to identify trip legs and mode of travel from raw GPS data 

consisting solely of time and space information. Later studies have proposed and analysed fully 

automatic GPS data processing methods (e.g., Schüssler and Axhausen, 2009; Bolbol et al., 

2012). These do not require any questionnaire data in the post-processing. Schüssler and 

Axhausen (2009) processed GPS data collected in Switzerland with no additional information 

provided by the respondents. The data set included 4,882 participants wearing the GPS devices 

for 6.65 days on average. The results were compared to the existing (national) travel survey. 

This showed that in aggregate figures the trip and mode identification only deviate slightly 

from that of the census data. However, the study did not perform any disaggregate evaluation 

of individual data. This was done in Bolbol et al. (2012), where 81 respondents wore a GPS 

device for 2 weeks but also answered a travel diary questionnaire. Based on speed and 
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acceleration only, the study designated each trip to one of six different modes. When 

comparing to the travel diary it was found that most modes could be inferred correctly. Some 

modes however had very similar speed and acceleration profiles, making it harder to 

distinguish between bus and metro, and between bus and bicycle.  

 Alternative approaches utilising information on local spatial information in the 

identification have also been proposed (e.g., Chen et al., 2010; Chung and Shalaby, 2005; Tsui 

and Shalaby, 2006; Bohte and Maat, 2009; Stopher et al., 2005; Gong et al., 2011; Schüssler, 

2010). These methods and applications have shortcomings in either (i) not including modes 

which are important in an application to the Greater Copenhagen Area (rail is not included in 

Chung and Shalaby (2005), and bicycles are not included in Chen et al. (2010) and Gong et al. 

(2011)), (ii) relying on prompted recall surveys where participants need to verify their trips 

(Bohte and Maat, 2009; Stopher et al., 2005), and/or (iii) including a very small sample of 

participants (only 9 participants in Tsui and Shalaby (2006)). These shortcomings were 

addressed in the present study. Moreover, the study included the five most dominant modes in 

the Greater Copenhagen Area and 183 participants totalling 644 person days of travel. The five 

modes cover in total 97.5% of all trips undertaken in the Greater Copenhagen Area (according 

to the Danish National Travel Survey (Christiansen, 2012)) and the sample size is sufficiently 

large to validate the algorithms. 

2.2  POST-PROCESSING OF GPS DATA 

Post-processing of raw GPS data typically involves four steps, namely (i) GPS data cleaning, 

(ii) trip and activity identification, (iii) trip segmentation into single-mode trip legs, and (iv) 

mode identification. The approach varies slightly between studies, e.g. steps ii) and iii) are 

performed jointly in Stopher et al. (2005). Some analyses subsequently apply additional steps. 

Chen et al. (2010), Stopher et al. (2005) and others infer the purpose of the trips identified, 

while e.g. Schüssler and Axhausen (2009) match the identified trip legs onto the corresponding 

modal networks. 

 Most analyses set off with a cleaning and filtering step, where systematic and random 

errors are removed from the data. This is often conducted by use of the number of satellites 

visible and the Horizontal Dilution Of Position (HDOP) (Nielsen and Jørgensen, 2004; Stopher 
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et al., 2005). Random errors can be dealt with by including a data smoothing algorithm 

(Schüssler and Axhausen, 2009). 

 Trip end points (activity points) are often identified at a location where the device has 

been stationary for a period of time and/or if the spatial density of observations has been high 

for a period of time (Schüssler and Axhausen, 2009; Stopher et al., 2005). The result is a 

number of trips which are defined as being from one activity point to the next. This approach 

was evaluated in Schüssler (2010). The study finds that the algorithm correctly detected 97% 

of stated activities without detecting any false activities. Most studies further split trips into trip 

segments (or trip legs), defined by a change of mode. Correct trip segmentation is crucial for 

the subsequent identification of the mode of travel of the trip legs. de Jong and Mensonides 

(2003) divide trips into trip legs whenever the speed drops to 0 km/t, with the option to 

combine segments again if no mode change occurred. Schüssler (2010) and Tsui and Shalaby 

(2006) initially identify walking segments if speed and acceleration are low. This is done under 

the assumption that trip legs of all other modes are preceded or followed by such short walking 

segments (or by time gaps). 

 Several studies find that most modes can be identified by only using the speed and 

acceleration profiles gathered by the GPS device. Moreover, Bolbol et al. (2012) found that 

using the acceleration profile rather than the speed profile induces better results when 

distinguishing between modes. The best results were however found when combining the two 

profiles. This is an easy and efficient approach for the correct identification of some modes. 

Certain modes can however not be clearly distinguished by such an approach. For example 

Bolbol et al. (2012) found that bus and bicycle trips in the Greater London Area have similar 

speed and acceleration profiles. Tsui and Shalaby (2006) found that bus characteristics overlap 

with characteristics of several other modes.  

 Other techniques have been proposed to improve the mode detection. Among these are 

the application of map matching to mode-specific networks by use of GIS-software (e.g., Chen 

et al., 2010; Chung and Shalaby, 2005; Tsui and Shalaby, 2006; Bohte and Maat, 2009; 

Stopher et al., 2005; Gong et al., 2011; Schüssler, 2010). In Gong et al. (2011) rail and bus trip 

legs are identified based on the proximity of start and end locations to rail stations and bus 
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stops. A similar approach for bus trip legs is proposed in Schüssler (2010). Using the proximity 

to bus stops of start and end locations to identify bus trips seems insufficient in urban areas 

where the bus network is extensive; trip legs starting and ending near bus stops might have 

been done by e.g. bicycle rather than by bus. Another approach is to utilise available 

information about the respondents implicitly in the identification of modes. Stopher et al. 

(2008) allow only car or bicycle as mode for a trip leg if the household has a car or bicycle at 

its disposal, respectively. However, these approaches have limitations if applied to a typical 

Scandinavian city where the bus network is dense and the ownership and use of bicycles is 

relatively high1. 

3 CASE STUDY: GREATER COPENHAGEN AREA 

The study area covers the Greater Copenhagen Area in which approximately 2 million people 

live. The study utilised data which were collected as part of the ongoing research project 

‘Analyses of activity-based travel chains and sustainable mobility’ (ACTUM). The dataset 

included 53 households, corresponding to 183 persons from 6 to 58 years of age. The 

households were sampled from the Danish National Travel Survey (Christiansen, 2012). All 

participants were asked to bring a GPS device on all trips undertaken within a period of 3-5 

days. Additionally, each respondent was asked to fill in an internet-based travel diary 

corresponding to one of the days for which GPS data were also collected. This enabled a 

validation of the new fully automatic trip- and mode detection algorithm.  

 The travel diaries were linked to the recorded GPS observations resulting in travel diaries 

with corresponding GPS data for 101 person days. Consequently, there were 82 persons for 

which data could not be linked. An analysis identified that this was due to one of the following 

three reasons; (i) the respondent failed to answer the survey for a day where he/she also carried 

a GPS device, (ii) no or only few GPS data were collected for the day where the survey was 

filled in, or (iii) there was a large difference between the number of trips reported and what 

could be seen in the GPS traces.  

                                                 
1 4 out of 5 inhabitants in Copenhagen have access to a bicycle (2012), and bicycling constitutes 36% (2012) of 
the trips (Municipality of Copenhagen, 2014). In Odense bicycling constitutes 24% (2012) of the trips 
(Municipality of Odense, 2014).  
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 The GPS device was the wearable KVM BTT08M (KVM, 2013). It logged data every 

second, thereby facilitating a high level of accuracy for the identification of en route travel 

choices and the location of trip ends. The dataset contained in total 6,419,441 collected GPS 

points (observations) corresponding to 1,783 hours of travel (including stationary and error 

data), and was collected on 644 person days of travelling.  

 The GIS-based analyses utilised a detailed digital representation of the road and public 

transport networks of the Greater Copenhagen Area. The road network was based on the road 

network of NAVTEQ (2010) and was in a format that allowed for a complex map matching 

algorithm to be run (Nielsen and Jørgensen, 2004). The public transport network used for mode 

identification of rail trip legs was a digital representation of the rail line alignment. The 

analysis distinguishing between bus and car utilised a disaggregate public transport network 

representation containing information on bus route alignment and stop locations for all bus 

lines and bus line variants. 

4 METHODOLOGY 

The study developed and tested a fully automatic method to post-process GPS data without 

requiring any information about or from the GPS carrier. The method performed, and iterated 

between, a series of steps. These steps identified activities (trip ends), trip legs and the most 

probable mode chosen. The method was based on the automatic trip and mode detection 

algorithm developed in Schüssler and Axhausen (2009). This was modified in order to improve 

the results in three way; i) GIS analyses were used to better distinguish between modes with 

similar speed and acceleration characteristics, ii) advanced feedback loops between steps were 

used, allowing inconsistent mode-sequences to alter the trip leg detection algorithm, and iii) 

map matching was used to exclude non-trips and hinder wrongly splitting trips on motorways. 

The method consisted of a 6-step process as shown in Figure 1. The following subsections 

present a detailed description of the steps of the algorithm. 
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Figure 1 – Approach used in this study. Boxes highlighted in light grey denote steps that are similar to 

corresponding steps in Schüssler and Axhausen (2009). Boxes highlighted in dark grey are steps where this 

paper contributes with new, alternative methods 

4.1  GPS DATA CLEANING 

The parameter values used for data cleaning vary across studies (Stopher et al., 2005; Schüssler 

and Axhausen, 2009; Tsui and Shalaby, 2006; Stopher et al., 2005). Most studies however 

require four satellites to be visible (Stopher et al., 2005; Schüssler and Axhausen, 2009). This 

ensures obtaining coordinates in three dimensions. To get accurate positions sufficient 

dispersion of the satellites is often required. Most studies ensures this by requiring a HDOP 

value of less than 4-5 (Tsui and Shalaby, 2006; Schüssler and Axhausen, 2009). This study 

adopted the values from Schüssler and Axhausen (2009), which required a minimum of 4 

satellites to be visible and a HDOP value lower than 4. In addition, only observations with 

altitude levels between -37 meters and +201 meters were regarded as acceptable. This 

corresponds to the altitude range in Denmark +/- 30 meters, where the +/- 30 meters equals 

three times the standard deviation of measurement for the GPS devices. Lastly, a Gauss kernel 

smoothing approach was used to remove systematic errors and perform data smoothing as 

suggested by Schüssler and Axhausen (2009). 
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4.2  TRIP AND ACTIVITY IDENTIFICATION 

The trip and activity identification algorithm developed in Schüssler and Axhausen (2009) was 

applied to identify trips. The activities (trip ends) were identified as locations where the bearer 

of the GPS was stationary for a period of time. The specification of the length of this period of 

time was based on the best compromise between identifying short stops (e.g., picking up 

persons) and falsely detecting activities (e.g., when driving in congested traffic or waiting at 

traffic signals) (Chen et al., 2010; Tsui and Shalaby, 2006; Stopher et al., 2005; Wolf, 2000). 

Accordingly, using the rules put forth in Schüssler and Axhausen (2009), an activity point was 

defined if at least one of three criteria was met; (i) if there was a time gap between consecutive 

observations of 120 seconds or more, (ii) if the speed had been lower than 0.01 m/s for at least 

60 seconds, or (iii) if the location of the GPS device was within a limited area for at least 60 

seconds. The first situation occurred when the device had been stationary for a while, which 

caused the unit to turn off to save battery, or if the GPS signal was lost during a trip leg. The 

last observation before the time gap was flagged as ‘beginning of (time) gap’ if the signal was 

lost, and the first observation when the signal was re-established was flagged as ‘end of (time) 

gap’. The last criterion was analysed by use of bundles of GPS points (Schüssler and 

Axhausen, 2009).The point density was calculated for every observation, corresponding to the 

number of observations within a 15 meter radius of the respective observation. An activity was 

flagged if this number exceeded 30 for at least two-thirds of the points in a sequence and the 

sequence lasted for more than 60 seconds (60 observations as the GPS device logged every 

second).  

4.3  TRIP SEGMENTATION INTO TRIP LEGS 

A trip between two activities might involve several trip legs with different modes of transport 

or changing between vehicles of the same mode (e.g. changing between train lines). The split 

of trips into trip legs was done by applying the approach of Schüssler and Axhausen (2009). 

Trip legs were identified by assuming that a short walking segment is needed between modes 

or when changing vehicles, e.g. from bike to train or from bus to another bus. The first and last 

points of such segments were denoted as ‘start of walk’ and ‘end of walk’, respectively. The 

walking segments were identified by means of the unique characteristics of walking (low 
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acceleration and low speed). If an identified walking segment was long (90 seconds or longer), 

it was defined as a separate trip leg.  

 A new trip leg was specified if 3 criteria were fulfilled. The first criterion required the 

speed in the mode change (or walking segment) to never exceed 2.00 m/s and the acceleration 

to never exceed 0.1 m/s2. The second criterion required the length of the derived trip legs to be 

at least 90 seconds for walking trip legs and at least 120 seconds for trip legs of all other 

modes. The last criterion required the short walking segment between two trip legs to include 

observations that were flagged as a ‘start of walk’ (or ‘end of gap’) and an ‘end of walk’ (or 

‘beginning of gap’) (see section 4.2). These criteria are similar to the ones applied in Schüssler 

and Axhausen (2009), but a test of different values of the thresholds led to a slight modification 

of some of the thresholds. Schüssler and Axhausen (2009) used a maximum speed of 2.78m/s 

and a minimum duration of walking trip legs of 60 seconds. 

4.4  MODE IDENTIFICATION 

Each trip leg was associated with a most probable mode of transport. The identification process 

was partly based on speed and acceleration profiles, similar to the approach used in Schüssler 

and Axhausen (2009) and in Bolbol et al. (2012). The driving conditions in the Greater 

Copenhagen Area however range from being slow moving traffic through congested urban 

areas to fast moving traffic on motorways. Additionally, in urban areas it is hard to distinguish 

whether the respondent is driving in a bus or following close behind it in a car, or even biking 

next to it. These factors cause problems distinguishing between modes solely based on 

acceleration and speed profiles.  

 The present study therefore developed the three-step mode identification process 

illustrated in Figure 2. This process was based on analyses using the speed and acceleration 

profiles as well as more advanced analyses conducted in GIS software. The steps are explained 

further in the following subsections. 
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Figure 2 – The stepwise mode classification algorithm. Continuous arrows denote mode classification whereas 

dotted arrows denote no change from previous step. Step 2 is directly adopted from Schüssler and 

Axhausen (2009), but with adapted fuzzy logic rules 

4.4.1 STEP 1: RAIL PROXIMITY 

Rail networks are typically characterised by not having the same spatial location as the street 

and path network (with the exception of on-street light rail and tram lines). This is also the case 

in the Greater Copenhagen Area, and trip legs using rail could easily be distinguished from 

others by their close proximity to the alignment of the rail network. Consequently, the first step 

identified rail trip legs based on the proximity of observations to the rail network. If more than 

75% of the observations in one trip leg were located less than 25 meters from the rail network, 

the trip segment was classified as being a rail trip. The 75% was chosen instead of 100% to 

account for potential small errors in the digital representation of the network as possible 

measurement errors of the GPS units. Additionally, the length of a rail trip leg was required to 

be at least 250 meters. This was done to avoid classifying walking trips on railway station 

platforms as rail trips. 250 meters was chosen as this is less than the shortest distance between 

railway stops in the Greater Copenhagen Area, but longer than most within-platform walking 

trips. An example of a successfully identified rail trip leg is shown in Figure 3. In this example 

almost 98% of the observations for the trip leg were located within 25 meters of the rail 

network. 
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Trip leg information 
Date:  09-11-2011 
Starting time: 16:07:01 
Ending time: 16:22:53 
Trip length: 15 min 52 sec 
Number of obs.: 947 
Number of obs. within 25m: 924 
Percentage rail: 97.6% 

Figure 3 – Example of a rail trip leg (shown with red) on the Danish S-train ring line identified by the rail 
proximity algorithm. The railway network is highlighted by bold black lines, and stations with green dots 

4.4.2 STEP 2: FUZZY LOGIC RULES 

The next step was to determine the mode of travel of the remaining trip legs by applying the 

fuzzy logic method developed by Schüssler and Axhausen (2009). The distinction between 

walk, bicycle, car and bus was done by applying certain logic rules to the speed and 

acceleration profiles of the trip legs. The modes were found to be best distinguished if using 

the median speed together with peak values of speed and acceleration. Most studies represent 

the peak values using 75-95 percentiles rather than extremes to take into account outliers 

(Stopher et al., 2005; Gong et al., 2011; Tsui and Shalaby, 2006; Schüssler and Axhausen, 

2009). As in Schüssler and Axhausen (2009) the study used the 95th percentiles of speed and 

acceleration in addition to the median speed.  

 Each profile was divided into three or four (possibly overlapping) intervals as proposed 

by Schüssler and Axhausen (2009). The division was based on an empirical analysis of the 

sample of trip legs in the data for which the mode was known, see Figure 4. Combining these 

defined intervals across the profiles by applying certain fuzzy logic rules facilitated the mode 

identification. The fuzzy logic rules applied are reported in Table 1. 
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Figure 4 – The distributions of the 95th percentiles of speed and acceleration and the median speed for the subset 

of trip legs for which the mode is known (rail excluded) from the control questionnaire 
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Table 1 – Fuzzy logic rules applied 

95th percentile acc. 95th percentile speed Median speed Mode classification 
Low Low Very low Walk 
Low Medium Very low Walk 
Low High Very low Bike 

Medium Low Very low Walk 
Medium Medium Very low Walk 
Medium High Very low Bike 

High  Very low Car 
Low Low Low Walk 
Low Medium Low Bike 
Low High Low Bike 

Medium Low Low Bike 
Medium Medium Low Bike 
Medium High Low Car 

High Low Low Bus 
High Medium Low Car 
High High Low Bus 
Low Low Medium Bike 
Low Medium Medium Bike 
Low High Medium Car 

Medium Low Medium Bike 
Medium Medium Medium Bike 
Medium High Medium Car 

High Low Medium Car 
High Medium Medium Car 
High High Medium Bus 
Low  High Car 
Low  High Car 
Low  High Car 

 

 Even though most trip legs were distinguishable based on a combination of speed and 

acceleration, this method did not uniquely separate modes (Figure 4). Walk and bicycle were 

the two modes which could be identified with a high chance of success based on the profiles. 

This is because these had the least overlaps with the other modes due to the consistently low 

maximum speed. These two modes could also be distinguished from each other when 

combining the profiles. 
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 Trip legs undertaken by car and bus were difficult to distinguish from each other based 

on the profiles. More advanced analyses were needed, and a two-fold approach was used to 

identify bus trips. Initially a separation was done based on the profiles, clearly distinguishing 

between trips which were assumed to definitely be car trips and trips which were either car or 

bus trips. Hence, all trip legs which conferred with the speed and acceleration intervals for bus 

trips were classified as potential bus trips. Through this, the sample of initially classified 

potential bus trips included all actual bus trips and a large subset of car trips. Subsequently, the 

identification of actual bus trips among this set of initially classified potential bus trips were 

done in step 3 (section 4.4.3). The trip legs not classified as bus trips in step 3 were assumed to 

be car trips and added to the set of already identified car trip legs. 

4.4.3 STEP 3: BUS LINE ALIGNMENT 

A new approach for separating car and bus trips was developed in the study. This was based on 

a thorough analysis of coherence between GPS-recorded stop locations and bus line bus stops. 

Moreover, the subset of potential bus trip legs was analysed to identify whether they follow the 

stopping pattern of any bus line.  

 The initial step of the identification specified that IF at least 15 GPS observations were 

located less than 25 meters from a bus stop, THEN the algorithm flagged the trip leg as 

stopping at the bus stop (note that one GPS record was stored per second). Next, IF the GPS 

recorded stops at at least 60% of potential bus stops between boarding and alighting stops on 

any bus line, THEN the trip leg was flagged as a probable bus trip (on bus lines fulfilling this 

criterion). The rather low percentage of 60% was applied to take into account bus routes with 

few passengers where the bus often does not stop at all bus stops. The threshold was set at 80% 

for high demand bus lines.  

 Subsequently, the trip legs in the sample of probable bus trip legs were analysed with 

regards to the location of their start and end. The start point and end point of each trip leg were 

analysed to see if they were both located less than 100 meters from a bus stop on any of the bus 

lines identified previously. IF this was the case, THEN the trip leg was classified as a bus trip. 

Otherwise the trip leg was classified as a car trip. An additional benefit of applying this method 

was the identification of the most probable actual bus line used.  
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 In some cases the trip leg identification algorithm split one actual bus trip leg into several 

trip legs due to long stopping times. To take this into account, the algorithm analysed the mode 

classified for the trip leg prior to and the trip leg subsequent to a flagged trip leg (within a 

timeframe of +/-300 seconds). If any of these were classified as car trip legs, they were 

reclassified as a probable bus trip leg. This was done based on the assumption that within a 

short timeframe it is more probable that two consecutive trip legs with similar speed and 

acceleration characteristics are of the same mode (rather than a change from car to bus or vice 

versa). 

 Figure 5 shows two examples of the application of the method. The example to the left is 

an actual bus trip, whereas the example to the right is an actual car trip. The first part of the 

analyses showed that there (for both examples) were clusters of observations at a large 

percentage of stops associated to several bus lines. The second part of the analysis determined 

whether the trip leg started and ended in the close proximity of any of the bus stops on the bus 

lines identified. In the example to the left the GPS carrier stopped at 14 out of 19 bus stops of 

bus line 68. The trip leg also began and ended close to bus stops on this line. This caused the 

trip leg to be correctly classified as a bus trip leg. In the example to the right, the GPS carrier 

stopped at several stops along bus line 161. The trip leg was however correctly classified as a 

car trip leg. This was because the trip leg started and ended more than 100 meters away from a 

bus stop served by bus line 161. 
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Actual bus trip Actual car trip 

 Trip information 
 Date   09-11-2011 
 Starting time: 16:41:24 
 Ending time:  16:53:18 
 Trip length:  11 min 54 sec 
 
 Bus line stop overlap # stops Hit% 
 200S  2/2 100% 
 300S  2/2 100% 
 68   14/19 74% 
 
Origin stop:  68 
Destination stop: 200S/300S/68 
Classified as:  Bus trip 
Actual bus line: 68 

 Trip information 
 Date:  09-11-2011 
 Starting time: 06:42:26 
 Ending time: 06:49:07 
 Trip length:  6 min 41 sec 
 
 Bus line stop overlap # stops Hit% 
 161   3/5 60% 
 
 
 
 Origin stop:  None 
 Destination stop: None 
 Classified as: Car trip 
 Actual bus line: - 

Figure 5 – Example of results from the bus stop algorithm. The lines represent relevant bus lines, while black and 

green dots represent GPS points and stops, respectively 
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4.5  ALGORITHMIC FEEDBACK 

The trip leg and mode identification was improved by identifying and correcting illogical mode 

shift patterns in a subsequent feedback step. This was done to avoid wrong trip leg splitting and 

modal classification due to irregular changes in speed and/or acceleration for a trip leg. Such 

irregularities could e.g. arise in congested stop-and-go traffic. The feedback algorithm used 

simple rules to identify irregular mode shifts and was based on a set of probable mode 

transfers. For example, it is likely that a bicycle trip leg follows or precedes a bus trip leg as 

some passengers might bicycle to and from the bus stop. It is however not very likely that a 

bicycle trip leg is followed by a car trip leg with only a short time gap between the trip legs.  

 Specifically, the algorithm searched for sets of two consecutive trip legs ending and 

beginning within 120 seconds and 25 meters of each other for which the mode-sequence was 

non-likely. The trip legs concerned were merged into one single leg in such cases. The mode 

for this merged trip leg was classified by re-running the mode classification on the merged trip 

leg. Table 2 lists the rules used to identify non-likely mode changes. 

 The feedback algorithm additionally searched for sets of three consecutive trip legs 

fulfilling certain criteria. Sequences were found where the first and third trip leg were 

identified as a car trip, but with the second trip leg identified as another mode. If certain criteria 

on the distance in space and time were fulfilled (see Table 2), the three trip legs were joined 

and assumed to be a car trip. A similar approach was used for other sequences of three trip 

legs, see Table 2. Such an approach ensured successful connection of trip legs that were 

mistakenly split due to congestion. 
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Table 2 – Feedback algorithms that join trip legs. ΔTime and ΔSpace refer to temporal and spatial distances 

between end of trip A and start of trip B (C for 3 leg cases), respectively. Order is the classification of the 2 

(3) trip legs and Classification is the mode assigned to the merged trip leg 

 ΔTime ΔSpace Order Classification 

2 consecutive 
trip legs  
AB  

≤ 120sec. ≤ 25m 

Car-Bicycle 
Bicycle-Car 

Rerun mode identification 

Bus-Car 
Car-Bus 

Probable Bus trip, c.f. 4.4.3 

3 consecutive 
trip legs 
ABC 

≤ 300sec. ≥ 25m 

Car – Bus – Car Car trip 
Car – Bicycle – Car Car trip 
Car – Train – Car Car trip 
Car – Walk – Car Car trip 

Bicycle – Bus – Car Car trip 

Bicycle – Bicycle – Car Car trip 
Bicycle – Bus – Car Car trip 

Bicycle – Train – Car Car trip 
Bicycle – Walk – Car Car trip 
Car – Bus – Bicycle Car trip 

Car – Bicycle – Bicycle Car trip 
Car – Train – Bicycle Car trip 
Car – Walk – Bicycle Car trip 

 

4.6 MAP MATCHING 

In the last component of the algorithm, all trip legs (except trip legs identified as rail trips) 

were map matched to the NAVTEQ road network (NAVTEQ, 2010). This was done using a 

map matching algorithm developed at DTU Transport (Nielsen and Jørgensen, 2004). The map 

matching served two purposes; (i) to detect and correct trip legs which were wrongly split due 

to congestion on motorways, and (ii) to remove non-trips. Non-trips are e.g. short trip legs 

generated as a consequence of the GPS device being turned on when no trip was actually 

undertaken. The first instance was defined as the case when the matched last link and first link 

of two consecutive trip legs were either a motorway or ramp. These two trip legs were then 

merged into one. The mode of the merged trip leg was determined by re-running the mode 

classification on the merged trip leg. Non-trips were identified as instances where either no 

GPS observations could be map matched or where less than half of the mapped route was 
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found by mapping of actual GPS observations2. Such non-trips were then discarded. This 

ensured that short non-trips were successfully removed, but also caused the removal of some 

actual walking or bicycle trips (e.g. short walking trips through parks, etc.). 

5 RESULTS 

Two configurations of the method were tested on the available dataset:  

(i) Algorithm 1 including trip leg and mode identification as well as feedback algorithm 

(sections 4.1-4.5), but excluding the map matching algorithm,  

(ii) Algorithm 2 including Algorithm 1 and the map matching algorithm (sections 4.1-4.6).  

 The effect of including the map matching could be evaluated by comparing the results 

generated by the two algorithms. The study also evaluated an algorithm similar to Algorithm 1 

but without the feedback algorithm. The results of this evaluation are however not reported, as 

only 11 trip legs were connected by the feedback algorithm (i.e. almost identical results).  

 A ‘traditional’ Baseline algorithm was also tested for comparison. This included trip leg 

and mode identification as proposed by Schüssler and Axhausen (2009), i.e. with the mode 

identification step based solely on fuzzy logic rules. Different configurations of intervals as 

well as rules were tested for each of the three algorithms, and the best configuration was 

chosen for each algorithm. 

 The above algorithms were run on the full dataset consisting of approximately 664 

person days of travel. The following analyses however only used the data subset where the 

travel mode was known from the additional questionnaire. This included trips that were 

directly connected to the travel diary data supplied by the respondents as well as trips where in-

depth investigation made it possible to deduct the travel information manually. The results of 

the mode identification were evaluated using two assessment measures. The first measure is the 

success rate which denotes the number of correctly classified trip legs by the algorithm as 

percentage of the number of observed trip legs of that mode. The second measure is the 

                                                 
2 In cases where only a part of the observed route can be map matched, the map matching algorithm generates the 
shortest path between links to which observations can be mapped. 
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confidence rate which denotes the number of correctly classified trip legs by the algorithm as 

percentage of the number of trip legs of that mode identified by the algorithm. Thus, the latter 

refers to the percentage of trip legs in the output of the algorithm where the mode was correctly 

identified. Hence, the first measure relates to the observed travel survey trip legs whereas the 

second measure relates to the trip legs in the output of the algorithm which may also include 

non-trips (see section 4.6).  

5.1  TRIP LEG IDENTIFICATION 

The total number of trip legs identified was 754, 744 and 464 if using the Baseline algorithm, 

Algorithm 1 and Algorithm 2, respectively. This compares to the total number of reported trip 

legs in the subset of the travel survey of 521. Three sources of error influenced these numbers: 

(i) There were trip legs in the travel survey where no corresponding GPS trip legs could be 

identified. This could be due to either the respondent not wearing the GPS device, the 

GPS device not being able to get an acceptable signal or the device not functioning 

properly.  

(ii) Some trip legs were identified by the algorithm even though no corresponding trip 

information was reported by the respondents in the diary. This error was partly due to 

underreporting by the respondents. Underreporting has also been observed in other 

studies including Stopher et al. (2007) and Wolf et al. (2003). Another reason was the 

identification of non-trips (see section 4.6). 

(iii) The algorithm sometimes wrongly separated a trip leg into several trip legs due to long 

dwell times while travelling. This could for example occur in stop-and-go congested 

traffic. The opposite was also observed, namely that several actual trip legs were 

identified as one trip leg if the dwell time(s) between trip legs was very low. We found 

examples of this happening when a fast travelling cyclist transferred to a local train or 

bus without any waiting time at the station.  
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 Figure 6 illustrates the results of a comparison between the trip legs identified by the 

algorithms and the trip legs reported by the respondents.  

 
Figure 6 – Classification of trip legs identified by the algorithms 

 The Baseline algorithm generated trip legs with the correct origin and destination for 

45% of the identified trip legs. 28% of the identified trip legs were partial trip legs, i.e. one 

reported trip leg was identified as two or more trip legs by the algorithm. A further 24% of the 

identified trip legs were non-trips which should not have been detected as a trip leg. Non-trips 

include random scatter and short trip legs which are not actual trips, e.g. walking around the 

workplace etc.. The remaining 4% represents trip legs that either included several actual trip 

legs (not split correctly) or trips where observations had a too low quality for general usage.  

 The stepwise mode classification algorithm and the feedback algorithm improved the 

results (Algorithm 1). Fewer trip legs were identified and more trip legs were correctly 

identified. Additionally, the feedback algorithm caused fewer actual trip legs to be wrongly 

split into several trip legs, as eleven partial trip legs were successfully connected into actual 

complete trip legs. The map matching algorithm of Algorithm 2 connected further nine trip legs 

successfully into four actual trip legs and 143 trip legs were correctly removed from the 

sample, cf. Figure 6. However, further analysis showed that some trip legs which should be 

merged remained unconnected. Overall, the best results were achieved when using Algorithm 2 

as this identifies the entire actual trip leg as one trip leg in 59% of the cases, and the entire 
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actual trip leg as one or several trip legs in 93% of the cases. Additionally, the percentage of 

wrongly identified trip legs (non-trips) dropped to a very low level (3%).  

 Figure 7 illustrates the distribution of lengths of the trip legs reported and identified by 

the algorithms. The distribution for Algorithm 2 fits best with the distribution of the reported 

trip legs. This suggests that many of the non-trips removed by the map matching algorithm of 

Algorithm 2 are short trip legs. We note that the map matching also removed trip legs which 

were reported in the diary. Figure 7 indicates that these wrongly removed trip legs are short 

trips. The results presented in section 5.2 support this by determining that most of the wrongly 

removed trip legs were bicycle or walking trips. 

 
Figure 7 – Trip length for identified GPS trip legs compared to stated travel survey trip lengths 

5.2 MODE IDENTIFICATION 

This section presents the methods’ capability to identify the correct mode of transport of the 

trip legs. Table 3 reports the results of a disaggregate comparison between the mode identified 

by the algorithm and the actual chosen mode (success rate) for the Baseline algorithm. 

Approximately 82% of the trip legs were assigned the correct mode of transport when only 

considering trip legs which were actual trip legs. Table 4 reports the corresponding results for 

Algorithm 1. The success rate obtained is 90%. Consequently, results were improved 

considerably by including the stepwise mode classification algorithm and feedback algorithm. 

Especially the method to identify rail trips was very efficient – using the fuzzy logic rules 
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caused 24% of the rail trip legs to be correctly identified, whereas the corresponding number 

for Algorithm 1 was 97%. Applying the method to identify car and bus trips also improved the 

results considerably, as the success rate for bus rose from 38% to 73% while the success rate 

for car rose from 82% to 93%. The success rates for walking and bicycling reduced slightly for 

Algorithm 1 when compared to the Baseline algorithm.  

Table 3 – The results of the mode identification when using Baseline algorithm (compared to reported mode use) 

  Observed 
Algorithm 

Walk Bicycle Bus Car Rail Non-trips Confidence rate 

Walk 184 12 2 6 - 111 58.4%
Bicycle 9 121 - 13 - 52 62.1%
Bus - 1 14 9 - 2 53.8%
Car - 4 21 143 25 12 69.8%
Rail - - - 3 8 2 61.5%
Other - - - - - 1 -

Total 193 138 37 174 33 180               62.3%
81.7% Success rate 95.3% 87.7% 37.8% 82.2% 24.2% - 

 

 Table 3 and Table 4 however also highlight a weakness of the two approaches. Both 

approaches identified many trip legs which were not reported in the diary (non-trips generated 

due to e.g. scatter). This induced the confidence rates to be 62% and 69% for the Baseline 

algorithm and Algorithm 1, respectively. The stepwise mode classification algorithm classified 

generated trip legs considerably better, especially for bicycle, bus (no generated bus trip legs 

were wrongly classified) and rail. Summarising, the comparison between the Baseline 

algorithm and Algorithm 1 showed that applying the stepwise mode classification algorithm 

and the feedback algorithm improved the mode classification (especially the success rate) 

considerably. The two algorithms however – as also found in section 5.1 – identified too many 

non-trips. 
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Table 4 – The results of the mode identification when using Algorithm 1 (compared to reported mode use) 

 Observed 
Algorithm 

Walk Bicycle Bus Car Rail Non-trips Confidence rate 

Walk 180 11 2 2 - 111 58.6%
Bicycle 2 114 - 6 - 15 83.2%
Bus - - 27 - - - 100.0%
Car 4 8 8 156 1 48 69.3%
Rail 3 - - - 33 4 82.5%
Other 3 1 - 3 - 2 -

Total 192 134 37 167 34 180           68.5%
90.4% Success rate 93.8% 85.1% 73.0% 93.4% 97.1% - 

 

 Many of such non-trips were removed when adding the map matching algorithm of 

Algorithm 2 (see section 5.1). This improved the overall confidence rate from 69% to 85% 

(Table 5). The improvement in confidence rate was however at the cost of also removing a 

large number of generated trip legs for which a corresponding observed trip leg exists. 

Specifically, many actual trip legs undertaken by foot or bicycle were discarded by the map 

matching algorithm. This was probably a consequence of the map matching being conducted 

on a road network not including bicycle and footpaths. The row denoted by ‘Success rate (all)’ 

highlights this issue. The measure represents the share of the total number of observed trip legs 

for which a generated trip leg with the correct mode was identified. 

 All trip legs identified as bus by the proposed algorithms were correctly classified 

(confidence rate). However, the success rates of 73-77% generated for bus were the lowest 

success rates obtained across modes. A disaggregate analysis identified two primary reasons 

for these lower percentages. The first reason was problems associated with the trip leg 

identification algorithm and the feedback algorithm. The trip leg identification algorithm 

caused some actual bus trips to wrongly be split into several trip legs due to congestion, longer 

dwell times, etc. The feedback algorithm subsequently failed to identify and reconnect these. 

The other reason was the actual stopping pattern of the buses. At times some buses may have 

skipped a large percentage of stops, e.g. during evening hours where fewer passengers board 

the bus. 
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Table 5 – The results of the mode identification when using Algorithm 2 (compared to reported mode use) 

    Observed 
Algorithm 

Walk Bicycle Bus Car Rail Non-trips Confidence rate 

Walk 75 6 1 1 - 13 78.1%
Bicycle 1 104 - 5 - 3 92.0%
Bus - - 27 - - - 100.0%
Car 1 7 7 152 1 19 81.3%
Rail - - - - 33 2 94.3%
Other 1 1 - 1 - 1 -

Total 78 118 35 159 34 38             84.6%
 

 

 

 

 

 

 

 

 

 92.2% 
(69.3%) 

Total (all) 192 134 37 167 34 - 

Success rate 96.2% 88.1% 77.1% 95.6% 97.1% - 

Success rate (all) 39.1% 77.6% 73.0% 91.0% 97.1% - 

5.3 FURTHER WORK 

The method to identify trips and trip legs were adopted directly from POSDAP (2012). We 

found that at times the approach wrongly split trips into several trip legs, and that this also 

influenced the results of the mode classification. Though the algorithmic feedback captured 

some of these wrongly split trip legs, more research is needed in the correct detection of trip 

legs. New methods could be developed which use the available disaggregate digital 

representation of the infrastructure, possibly in combination with congestion measures. Such an 

approach could e.g. hinder that trips are wrongly split into several trip legs when queuing at 

intersections.  

 The present study analysed all generated trip legs and found that many of these do not 

have a corresponding observed trip leg reported in the travel diary. This can partly be because 

of underreporting, but the analysis found that many non-trips were identified around activity 

locations. While the method developed and tested in this present study aimed at removing such 

non-trips (through the map matching step), the other studies reviewed do not seem to explicitly 

deal with these (important) non-trips. The map matching algorithm succeeded in removing 

most of the non-trips, however at the cost of also removing trip legs which were actually 

performed. These wrongly removed trip legs were primarily walking and bicycle trips. The 

incorrect removal of these could be partly explained by the use of the street network for the 

map matching. Additional research could test whether expanding the network to also include 

paths would further improve the results. 
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6 CONCLUSIONS 

Automated post-processing procedures are essential to have available in order to facilitate the 

use of GPS data for transport surveys. The paper has presented a fully automated and 

disaggregate method to process raw GPS data and classify trips, trip legs and the most probable 

mode of transport used. The method is applicable to all cases where data is collected as 

individual-based GPS traces and where detailed digital information on the local infrastructure 

is available. This study applied the method to GPS data collected in the Greater Copenhagen 

Area, for which a detailed digital representation of the infrastructure is available. 

 The deployment of the method does not require the respondents to provide any 

information beyond the GPS traces. It is however important to note that the parameters used in 

e.g. the segmentation of the speed and acceleration profiles may need to be adapted/calibrated 

to fit the characteristics of the specific case. To do this, it is necessary to have available a 

control sample of corresponding revealed or stated information of trips undertaken by the 

respondents (e.g. trip start and end time and location, mode chosen etc.).  

 The method performs, and iterates between, a series of steps. While being based on the 

automatic trip and mode detection algorithm developed in Schüssler and Axhausen (2009), the 

method contributes by utilizing (i) available disaggregate information on the local 

infrastructure to conduct GIS analyses to better distinguish between modes with similar speed 

and acceleration characteristics, (ii) advanced feedback loops between steps, allowing 

inconsistent mode-sequences to alter the trip leg detection, and (iii) map matching to exclude 

non-trips and hinder wrongly splitting of trips on motorways. 

 Two variants of the method proposed were tested, one algorithm with the map matching 

step and one without it. This showed that including map matching improves the success rates 

by removing many non-trips, however at the cost of also removing some actually performed 

(primarily walking) trips. Both variants produced success rates above 90% when comparing to 

the control sample. These results are promising in comparison to the overall success rates 

obtained in other studies. Gong et al. (2011), Chen et al. (2010) and Bolbol et al. (2012) 
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obtained success rates of 82.6%, 79.1% and 87.4%3 respectively. Chung and Shalaby (2005) 

obtained a success rate of 91.6% in their study including 60 trips. Especially the success rates 

of 77% for bus and 97% for rail are high when compared to other studies; Gong et al. (2011) 

and Bolbol et al. (2012) obtained success rates of 35.7% and 84.1% for rail, and 62.5% and 

58.29% for bus. The current study also applied the method proposed by Schüssler and 

Axhausen (2009) on the same dataset. This allowed evaluating whether the high success rates 

were generated due to special circumstances related to the case study rather than improvements 

in the methodology. Success rates of 24% and 38% were obtained for rail and bus, 

respectively, when using this existing algorithm. This verified that the high success rates for 

the two proposed algorithms were generated as a result of applying the suggested advanced 

feedback algorithm and utilising the available disaggregate network data.  

 The study has contributed to literature by demonstrating much improved fit rates in the 

detection of trips, trip legs and mode of transport used. Through this we believe that the 

abilities of automatic post-processing methods are causing travel surveys based on GPS data 

collection to be highly attractive, even for complex multi-modal study areas. 
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Abstract: In recent years, a consensus has been reached about the relevance of calculating the 

value of congestion and the value of reliability for better understanding and therefore better 

prediction of travel behavior. The current study proposed a RP approach that used a large 

amount of GPS data from probe vehicles to provide insight into actual behavior in choosing a 

route. Mixed path size correction logit models were estimated from samples of 5,759 

observations in the peak period and 7,964 observations in the off-peak period, while a mean-

variance model was specified to consider both congestion and reliability terms. Results 

illustrated that the value of time and the value of congestion were significantly higher in the 

peak period because of possible higher penalties for drivers being late and consequently 

possible higher time pressure. Moreover, results showed that the marginal rate of substitution 

between travel time reliability and total travel time did not vary across periods and traffic 

conditions, with the obvious caveat that the absolute values were significantly higher for the 

peak period. Last, results showed the immense potential of exploiting the growing availability 

of large amounts of data from cheap and enhanced technology to obtain estimates of the 

monetary value of different travel time components from the observation of actual behavior, 

with arguably potential significant impact on the realism of large-scale models. 
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1 INTRODUCTION 

Travel demand studies place a significant emphasis on the estimation of the value of time 

(VOT), namely the monetary value assigned by travelers to their travel time savings. 

Theoretical foundations of the VOT concept have been thoroughly reviewed in the recent past 

(Jara-Diaz, 2007; Small and Verhoef, 2007), and empirical estimates of the VOT have been 

extensively provided by researchers and practitioners and meticulously reviewed (Wardman, 

2001; Zamparini and Reggiani, 2007; Shires and de Jong, 2009; Abrantes and Wardman, 

2011).  

 Recently, consensus has been reached about the importance of calculating two values that 

are related to the VOT: (a) the value of congestion, as the VOT varies with traffic conditions 

and relates to the complexity of driving conditions and the emergence of feelings of frustration 

and danger when more vehicles are present on the road (see, e.g., Fosgerau et al., 2007; 

Wardman and Ibañes, 2012], and (b) the value of reliability, as the VOT relates to the 

predictability of travel time and the repeatability of the travel experience without additional 

costs that are attributable to uncertainty (see, e.g., Li et al., 2010; Carrion and Levinson, 2012). 

 Evidence of the value of congestion dates back about 40 years according to a report that 

‘the estimated coefficient of auto congestion time was about thirty percent larger (in 

magnitude) than that of auto non-congestion time’ (Train, 1976). About 10 years later, a stated 

preference (SP) study in the United Kingdom provided the first estimates of the value of 

congestion, which ranged between 1.28 and 1.46 for different trip purposes (Wardman, 1986). 

Then, a large variety of studies estimated the value of congestion, with values ranging from 

about 1.00 to more than 2.50, with higher valuation of congested time for commuters and 

methods inclining heavily towards SP studies of mode and route choice, and rarely towards 

revealed preference (RP) studies, with higher valuation of congested time for unlabeled SP 

studies (Wardman and Ibañes, 2012). Values of congestion have been mentioned to contain an 

element of reliability, and some practitioners have supported the inclusion of a reliability 

variable alongside free-flow and congested time variables (Wardman and Ibañes, 2012). 

 Evidence of the value of reliability dates back about 30 years, according to the 

classification of travel time variability, into three categories: (a) interday variability, (b) 
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interperiod variability, and (c) intervehicle variability (Bates et al., 1987). About 5 to 10 years 

later, SP studies in the United States presented the first estimates of the value of reliability 

ratio, with values between 1.31 and 3.29 for car commuters (Noland and Small, 1995; Noland 

et al., 1998). Then, a large number of studies offered estimates of the value of reliability ratio, 

with values ranging from about 0.50 to more than 3.00 and differences across periods and 

methods leaning mostly towards SP studies and less frequently towards RP, with slightly 

higher values obtained for the latter over the former (Li et al., 2010; Carrion and Levinson, 

2012). Clear differences between estimates of the value of reliability did not emerge when one 

considers the two major approaches of the mean-variance model and the scheduling model. 

 The current study contributes to both lines of research by (a) providing additional 

evidence about the value of congestion and the value of reliability from actual observed 

behavior and (b) answering the need to include measures of reliability when values of 

congestion are calculated as, so far, only SP approaches consider congestion and reliability 

variables concurrently (see Wardman and Ibañes, 2012). More importantly, the current study 

illustrates how to exploit the growing availability of large amounts of data from cheap and 

enhanced technology to obtain estimates of the monetary value of travel time components from 

the observation of actual behavior. Being able to make use of the availability of large amounts 

of data is arguably extremely important for the realism of large-scale models being developed 

worldwide.  

 The current study presents the estimation of the value of congestion and the value of 

reliability from the observation of drivers’ behavior in route choice. Car drivers were using a 

vehicle equipped with GPS in the Greater Copenhagen, Denmark, area in 2011, and recorded 

GPS points were matched to the network of the Danish National Model [Landstrafikmodel 

(LTM)] for construction of a data set of observed route choices. Route choice behavior was 

modeled with a two-stage approach consisting of choice set generation and model estimation: 

(a) a doubly stochastic generation method was applied to the origin-destination pair of each 

observed route for producing route choice sets, and (b) mixed path size correction logit 

(MPSCL) models were estimated for modeling route choice behavior. As travel times were 

available from the LTM assignment, travel time variables could be calculated for each link as 

free-flow time and congested time to estimate two time parameters and calculate the value of 
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congestion. As distributions of travel times were available from probe vehicles driving through 

the network, and as the literature suggests the use of differences of percentiles of travel time 

distributions as variance measures in RP studies (Carrion and Levinson, 2012), travel time 

reliability could be calculated for each link as the difference between the 90th and the 50th 

percentiles to compute the value of reliability ratios. Accordingly, the MPSCL were formulated 

as mean-variance models that accounted for variability of travel times on the network, 

heterogeneity in the preference for the time components, and similarity across alternative 

routes. 

 The remainder of the paper is organized as follows. The next section describes the data, 

the technique of choice set generation, and the MPSCL model that were applied in the current 

study. Then, the results of choice set generation and model estimation are presented, and the 

values of congestion and reliability are illustrated. Last, conclusions are drawn from the current 

study.  

2 METHODS 

2.1 DATA  

Route choice behavior was observed in 2011 for 169 drivers who lived in the Greater 

Copenhagen area and used vehicles equipped with GPS devices that allowed collection of 

traces of their routes. The traces were matched to the LTM network, and the obtained routes 

were filtered by removing (a) routes that were shorter than 1 km for the likely impossibility to 

identify alternative routes and (b) routes that were filled with shortest-path linkage between 

two matched parts for the presence of gaps in the GPS traces. The map-matching and filtering 

process produced an initial data set of 17,115 observed routes.  

 The LTM network consists of 34,251 links covering the entire country and accounts for a 

variety of road types: motorways, highways, national roads, regional roads, major rural roads, 

minor rural roads, major urban roads, and minor urban roads. The LTM network was preloaded 

with traffic volumes from the LTM traffic assignment, and hence the travel time was expressed 

as the sum of free-flow time and congested time for each link of the LTM network during each 

of 10 periods corresponding to the most disaggregate temporal resolution of the LTM.  
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 For the LTM network, speed observations were collected from probe vehicles. These 

observations allowed the calculation of travel time reliability for each link and each of the 10 

periods as the difference between the 90th and the 50th percentiles of the observed travel time 

distribution in accordance with the following procedure: (a) if the link had at least 10 

observations, then the difference was calculated directly from its time distribution; (b) if the 

link had fewer than 10 observations, then the difference was calculated from the time 

distribution on that link joined with the immediately preceding and following links belonging 

to the same road; and (c) if the joined links had fewer than 10 observations, then the difference 

was calculated from the time distribution on those links joined with the adjacent links 

belonging to the same road type within a radius of 2 km.  

 For the LTM network, the cost of driving through each link was calculated as the product 

of its length and the marginal cost of driving that the Danish Ministry of Transport defined in 

2011 as being equal to 0.89 Danish Krone (DKr) per kilometer (about US$0.16/km or 

€0.12/km) and corresponding to the consumption of fuel, oil, tires, and battery.  

2.2 CHOICE SET GENERATION  

The initial 17,115 observed routes were considered for the estimation of route choice models 

and hence were required to have alternative routes generated, given the two-stage approach to 

modeling route choice behavior (Prato, 2009). Reasons of behavioral plausibility and 

computational efficiency advised to apply a doubly stochastic method of route generation that 

produces alternative routes (Prato, 2009, 2012) under the assumption that drivers might 

perceive costs with error and that drivers’ perceptions might differ from one another (Nielsen, 

2000; Bovy and Fiorenzo-Catalano, 2007).  

 The generating function of the applied doubly stochastic method accounted for 

heterogeneity in the two components of the travel time (i.e., free-flow time and congested time) 

and error in length. The parameters of the travel time components were assumed to be 

lognormally distributed to avoid unreasonable positive preferences for time, and the error term 

was assumed to be gamma distributed to allow additivity across links in the routes. The 

distributions of parameters and the error term were calibrated in accordance with the utility 

functions used in the LTM traffic assignment, and random values were extracted 100 times 
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from the respective distributions for each observation n and for the period when observation n 

occurred. Accordingly, 100 alternative routes were produced for each of the 17,115 observed 

routes and then postprocessed before model estimation.  

 The post-processing included (a) defining the choice set composition for each 

observation, (b) removing observations for which the choice set contained only one alternative 

route, (c) removing observations for which the choice set did not contain any alternative 

reasonably similar to the observed route, and (d) computing the variables for model estimation. 

The first step removed duplicate routes generated during the 100 iterations and composed each 

choice set of each observation with alternative routes that were unique in not having any exact 

duplicate in the choice set. The second step removed observations for which the model could 

not be estimated because no alternative to the chosen route existed. The third step calculated 

for each route in each choice set the coverage measure covg to verify its consistency with the 

observed route with a certain tolerance (Prato, 2009): 
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where  

I(•)  = function equal to 1 when its argument is true and 0 otherwise 

Lng  = overlapping length between the route generated by method g and observed route n, 

Ong =  overlap percentage of the route generated by method g and observed route n,  

Ln =  length of observed route n,  

N  = number of observations at the third post-processing step, and  

δ   = overlap threshold between generated and observed routes.  

Observations for which the choice set did not contain at least one route overlapping the 

observed one for more than 80% were not considered for model estimation because of being 

inconsistent with the observed behavior (Prato, 2009). 

 The fourth post-processing step calculated the following variables for each alternative 

route in the choice set of observation n for the period during which observation n occurred: (a) 

free-flow time, (b) congested time, (c) travel time reliability, (d) cost, (e) number of left turns, 
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and (f) number of right turns. Specifically, for each route, free-flow time, congested time, and 

cost were summed over the links composing the route; travel time reliability was calculated as 

the difference between the 90th and the 50th percentile of the travel time distribution over the 

route; and numbers of turns were calculated from the topography of the network. 

2.3 ROUTE CHOICE MODEL 

For each observation n, a linear-in-parameter utility function Vj was specified for each route j 

within the choice set to estimate a path size correction logit (PSCL) model (Bovy et al., 2008):  

 costcosj fft j congt j trel j j left j right jV fft congt trel t left right            (2) 

where  

fftj = free-flow time, 

congtj = congested time, 

trelj = travel time reliability, 

costj= cost, 

leftj = number of left turns, 

rightj= number of right turns, and 

βx  = parameters to be estimated.  

Socioeconomic characteristics of the drivers were not available because the objective of the 

data collection was originally to collect information about congestion in the study area.  

 The specification of the utility function corresponds to the specification of a mean-

variance model. Although debate exists about the use of mean-variance versus scheduling 

models, for the current study, travel time distributions on the network links were available 

rather than preferred arrival time (Li et al., 2010; Carrion and Levinson, 2012). Accordingly, 

the model selection was data driven rather than theory driven; nevertheless, the mean-variance 

approach is advantageous for the straightforward calculation of the value of congestion and the 

value of reliability (Li et al., 2010). 
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The probability of selecting the observed route i in the choice set Cn is equal to (Bovy et al., 

2008) 
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where pscj is the path size correction and βpsc is a parameter to be estimated. Path size 

correction pscj captures the similarity across alternative routes within choice set Cn and is 

defined as (Bovy et al., 2008) 
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where 

Lj = length of route j, 

La  = length of link a, 

Γj  = set of links belonging to route j, and 

δaj  = link-path incidence dummy (equal to 1 if link a belongs to route j and 0 otherwise). 

 The current study considered preference heterogeneity across drivers, and hence an 

MPSCL model was estimated in which the βs were random parameters distributed with 

probability density function f(β│θ) characterized by parameters θ. Accordingly, the probability 

of driver n to select route i needed to be integrated over the distribution of the βs:  
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 Possible distributions for time and cost components included lognormal, the constrained 

triangular, and the Johnson SB because of the avoidance of positive preferences for travel time, 

while possible distribution for the turn components included the normal as well because not all 

drivers might prefer the most direct route. Given the distribution of the parameters, the 

probability did not have a closed-form expression, and hence the maximization of the 

likelihood function consisted of simulating the multidimensional integral: 
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where  

SLL = simulated log likelihood, 

N = number of observations, 

J = number of alternative routes, 

dni = 1 if driver n has selected route i and 0 otherwise, and 

r  = one of the R random draws required for integral simulation, and, in superscript, an 

instance of a draw from the distribution of the random parameters βs that realizes 

the utility function Vj
r. 

The parameters β, θ and βpsc were restricted so as not to vary across different observations of 

the same driver and were estimated in the current study by using 1,000 random draws from a 

modified Latin hypercube sampling method (Hess et al., 2006) in the freeware Biogeme 

(Bierlaire, 2008).  

 Given the estimated values of the βs, the value of congestion was calculated as the ratio 

between the estimates of the parameters βcongt and βfft, while, for comparison, the value of 

reliability ratio was calculated as the ratio between the estimates of the parameters βtrel and βfft 

and the ratio between the estimate of βtrel and the combination of βfft and βcongt for the average 

level of congestion conglev [i.e., (1- conglev)·βfft + conglev ·βcongt ], where conglev is the 

percentage of congested travel time with respect to the total travel time. Because the values 

were distributed, the mean, standard deviations, and confidence intervals were calculated 

analytically, as illustrated by Daly et al. (2012).  
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3 RESULTS 

3.1 GENERATED CHOICE SETS 

The post-processing of the initial 17,115 observations initially removed 1,838 observations 

because they each contained only one alternative, and then an additional 841 observations were 

removed because they were behaviorally inconsistent with the observed routes in their overlap, 

being below an acceptable 80% threshold (Prato, 2009).  

 The distribution of the coverage over the cumulative distribution of the observations is 

presented in Figure 1, which shows that the doubly stochastic method of route generation 

replicated link by link almost 85% of the observed routes and reproduced, with 80% overlap, 

about 95% of the routes. These results suggest that the doubly stochastic method was 

behaviorally consistent in its ability to replicate the observed routes within the generated sets. 

In addition, the doubly stochastic method was computationally efficient in its capacity to 

generate 100 alternative routes for 17,115 observations in a couple of hours in the large-scale 

LTM network thanks to the programming in the C# language of a module for route set 

generation in ArcGIS. 

 
Figure 1 – Coverage distribution 
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 For the remaining 14,436 observations, the distribution of the choice set size is presented 

in Figure 2, which shows that (a) the number of unique routes within the generated choice sets 

covers the entire range from 2 to 100, (b) the median is equal to 17 routes, (c) two-thirds of the 

observations have 35 alternatives or less, and (d) only one-fourth of the observations have 50 

alternatives or more.  

 The average travel time on the routes is approximately 12.5 min, with a 90% confidence 

interval between 4.8 and 29.3 min. The average level of congestion on the routes (i.e., the ratio 

between congested and free-flow time) is approximately 17.8% over the entire day, with 

expectedly higher value in the morning and afternoon peaks (34.3%) and lower value in the 

midday and evening off peaks (8.8%). These averages compare reasonably well with recently 

published levels of congestion in Copenhagen (TomTom, 2012). The average level of 

reliability (i.e., the difference between the 90th and the 50th percentiles of the travel time 

distribution on the routes) is approximately 30.9% of the travel time over the entire day, with 

intuitively larger value in the morning and the afternoon peaks (40.4%) and smaller value in 

the morning and evening off-peaks (22.8%).  

 The analysis was conducted for the 10 periods in the LTM, and similarities emerged in 

the observed levels of congestion and reliability between the two periods in the morning peak 

hours (i.e., 7 to 8 a.m. and 8 to 9 a.m.) and the three periods in the afternoon peak (3 to 4 p.m., 

4 to 5 p.m., 5 to 6 p.m.), as well as between the midday off-peak period (9 a.m. to 3 p.m.) and 

the evening off-peak period (6 to 9 p.m.). Only a limited number of observations were in the 

remaining periods of late evening and early morning, when free-flow conditions are usually 

observed. 
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Figure 2 – Choice set size distribution 
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congested time and even more sensitive to time reliability. Also predictably, drivers look for 

minimizing travel costs and searching for the most direct routes, with left turns being perceived 

as more time consuming than right turns. Finally, the parameters of the path size correction 

appear in line with the theory that hypothesizes penalties to the utility of routes highly similar 

to alternative ones in the choice set.  

 Estimation of the MPSCL models for peak and off-peak periods considered several 

possibilities for the distributions of the parameters. Normal and triangular distributions were 

considered for left and right turns, but the parameters expressing heterogeneity across drivers 

were not significantly different from 0, and hence the final models considered fixed 

coefficients for these two variables. The lognormal, the constrained triangular, and the Johnson 

SB distributions were considered for travel time variables and cost to control for their sign to 

be negative. The parameters expressing heterogeneity of taste for cost were not significantly 

different from 0, and hence the final models also considered a fixed coefficient for cost. The 

parameters accounting for heterogeneity in the preferences of drivers for time components 

were significant, and lognormal distributions provided the models with the best fit. However, 

correlation of the three parameters was estimated and was nonsignificant. 

Table 1 – PSCL Estimates 

 Peak period Off-Peak Period 

Variable Est. t-Test Est. t-Test 

Free-flow time (min) -0.473 -12.10 -0.338 -14.51 
Congested time (min) -0.689 -17.50 -0.424 -18.27 
Travel time reliability (min) -0.843 -48.47 -0.524 -45.57 
Cost (DKr) -0.221 -3.08 -0.272 -6.10 
Left turns (unit) -0.618 -31.21 -0.636 -43.86 
Right turns (unit) -0.431 -26.94 -0.446 -36.86 
Ln (path size) 0.935 17.61 0.904 25.54 

Number of observations 5759 7964 
Null log-likelihood -15607.99 -23987.90 
Final log-likelihood -8870.99 -15959.49 
Adjusted rho-square 0.431 0.334 
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 Estimates of the two MPSCL models for peak and off-peak periods are presented in 

Table 2. The lognormal distributions of the parameters for the travel time components are 

presented with the two parameters μ and σ of the distribution. Both models improve in 

goodness of fit with respect to the respective PSCL models, as likelihood ratio tests show the 

rejection of the hypothesis that the correct model is without distributed parameters for travel 

time components for both the peak model [likelihood ratio test (LRT) = 193.05, degrees of 

freedom (df) = 3, p = .0000] and the off-peak model (LRT = 90.23, df = 3, p = .0000). 

Estimates of the parameters of the cost and the turns maintained comparable values and 

expressed the same negative preference for long and tortuous routes. Estimates of the 

parameters of the travel time components maintained the negative preference for free-flow 

time, congested time, and time reliability, as well as the relatively stronger sensitivity. Their 

means in the lognormal distributions are, respectively, -0.494, -0.740 and -0.891 for the peak 

period and -0.351, -0.443 and -0.536 for the off-peak period. In addition, their standard 

deviations in the lognormal distributions are, respectively, 0.130, 0.234 and 0.352 for the peak 

period and 0.057, 0.083 and 0.152 for the off-peak period. 

Table 2 – MPSCL Estimates 

 Peak Period Off-Peak Period 

Variable Est. t-Test Est. t-Test 

Free-flow time (μ, min) -0.739 -13.26 -1.060 -15.12 
Free-flow time (σ, min) 0.259 2.10 0.161 2.53 
Congested time (μ, min) -0.348 -5.53 -0.831 -11.94 
Congested time (σ, min) 0.309 2.36 0.186 2.13 
Travel time reliability (μ, min) -0.189 -6.90 -0.653 -17.84 
Travel time reliability (σ, min) 0.381 3.07 0.243 3.57 
Cost (DKr)  -0.256 -3.25 -0.299 -5.64 
Left turns (unit) -0.665 -32.76 -0.644 -44.11 
Right turns (unit) -0.467 -27.63 -0.455 -38.24 
Ln (path size) 0.929 16.92 0.897 24.64 

Number of observations 5759 7964 
Null log-likelihood -15607.99 -23987.90 
Final log-likelihood -8774.47 -15914.37 
Adjusted rho-square 0.437 0.336 
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3.3 VALUE OF CONGESTION AND VALUE OF RELIABILITY RATIO 

Estimates of the PSCL and MPSCL models allowed calculation of the VOT for free-flow time 

and congested time, the value of reliability, the value of congestion, and the value of reliability 

ratio that are presented in Table 3. 

 The values of the PSCL and the mean values of the MPSCL are comparable and 

highlight the same trends. Relative to the off-peak period, in the peak period the VOT is higher 

for all three time components, the value of congestion is greater, and the value of reliability 

ratio is larger. Intuitively, drivers in the peak period are likely to commute and hence are 

required to avoid being late; those conditions make them more sensitive to time generally, to 

congestion particularly, and to uncertainty especially. Conversely, drivers in the off-peak 

period experience less congestion and have less restrictive time constraints; those conditions 

make them less sensitive to the eventuality of being late. In addition, consideration of taste 

heterogeneity suggests much larger variation in the preferences of drivers during the peak 

period. 

 The VOT combining free-flow and congested time produced reasonable values for 

Denmark. When an average congestion of about 35% in the peak period is considered, the 

VOT is approximately DKr149.0/h (about US$26.5/h or €20.0/h) for the PSCL model and has 

a mean equal to DKr135.8/h (about US$24.2/h or €18.2/h) and standard deviation equal to 

DKr40.7/h (about US$7.3/h or €5.5/h) for the MPSCL model. When an average congestion of 

about 9% in the off-peak period is considered, the VOT is roughly DKr76.3/h (about 

US$13.6/h or €10.2/h) for the PSCL model and has a mean equal to DKr72.0/h (about 

US$12.8/h or €9.7/h) and standard deviation equal to DKr12.0/h (about US$2.1/h or €1.6/h) 

for the MPSCL model. 

 When the PSCL model is considered, the value of congestion is equal to 1.46 in the peak 

period and 1.25 in the off-peak period. The value of reliability ratio with respect to free-flow 

time is equal to 1.78 for the peak period and 1.55 for the off-peak period. When factoring the 

35% and 9% average congestion level in the two periods, respectively, the value of reliability 

ratio amounts to 1.54 and 1.51, respectively. For the MPSCL model, the mean of the value of 

congestion is equal to 1.50 in the peak period and 1.26 in the off-peak period. The mean of the 
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value of reliability ratio with respect to the free-flow time is equal to 1.80 for the peak period 

and 1.53 for the off-peak period, but again, considering the average congestion levels makes 

the values amount to more comparable values of 1.53 and 1.49, respectively. Apparently, the 

value of reliability ratio with respect to the total travel time is similar between peak and off-

peak periods, regardless of the level of congestion in the two periods.  

Table 3 – Value of Congestion and Value of reliability Ratio 

 Peak Period Off-Peak Period 

Measure PSCL MPSCL PSCL MPSCL 

VOT free-flow time (mean, DKr/h) 128.42 115.64 74.56 70.38 
VOT free-flow time (st.dev., DKr/h) - 30.43 - 11.37 
VOT congested time (mean, DKr/h) 187.17 173.27 93.51 88.91 
VOT congested time (st.dev., DKr/h) - 54.75 - 16.68 
Value of reliability (mean, DKr/h) 228.95 208.45 115.59 107.51 
Value of reliability (st.dev., DKr/h) - 82.45 - 26.54 
Value of congestion (mean) 1.46 1.50 1.25 1.26 
Value of reliability ratio (mean)  1.54 1.53 1.51 1.49 

 

 As the distribution of the random parameters is lognormal and hence asymmetric, Table 

4 presents the 90% and 95% confidence intervals of the VOT of free-flow time, the VOT of 

congested time, the value of reliability, the value of congestion, and the value of reliability 

ratio. Confidence intervals are calculated analytically, and results show significant dispersion 

in the VOT of the three time components for both peak and off-peak periods (Daly et al., 

2012). When the value of reliability ratio with respect to travel time is considered and the level 

of congestion in the peak and off-peak periods are factored, the confidence intervals are fairly 

similar: for peak and off-peak periods, the intervals are, respectively, 1.26 to 1.75 and 1.29 to 

1.67 at the 90% level, and 1.22 to 1.81 and 1.26 to 1.72 at the 95% level. 
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Table 4 – Confidence Intervals of Value of Congestion and Value of Reliability Ratio from MPSCL Estimates 

Measure Peak Period Off-Peak Period 

Confidence interval 90%   
 VOT free-flow time (DKr/h) 73.07 - 171.16 53.36 - 90.47 
 VOT congested time (DKr/h) 99.47 - 274.43 64.35 - 118.66 
 Value of reliability (DKr/h) 103.54 - 362.90 69.96 - 155.72 
 Value of congestion (mean) 1.36 - 1.60 1.21 - 1.31 
 Value of reliability ratio (mean)a 1.26 - 1.75 1.29 - 1.67 

Confidence interval 95%   
 VOT free-flow time (DKr/h) 67.35 - 185.70 50.72 - 95.16 
 VOT congested time (DKr/h) 90.25 - 302.45 60.69 - 125.82 
 Value of reliability (DKr/h) 91.82 - 409.22 64.80 - 168.12 
 Value of congestion (mean) 1.34 - 1.63 1.20 - 1.32 
 Value of reliability ratio (mean) a 1.22 - 1.81 1.26 - 1.72 

a calculated with respect to the VOT of the total travel time by considering the average congestion level in the 

peak period at 35% and in the off-peak period at 9%. 

4 CONCLUSIONS 

As consensus has been reached in recent years about the importance of evaluating the value of 

congestion and the value of reliability to improve understanding and hence to better predict 

travel behavior, the current study contributes to both lines of research by providing additional 

evidence about the value of congestion and the value of reliability from observed behavior and 

proposes an RP approach that answers the need to include measures of reliability when value 

of congestion is calculated. A sample of 5,759 observations in the morning and afternoon peak 

periods and a sample of 7,964 observations in the midday and evening off-peak periods were 

used for the estimation of MPSCL models with lognormally distributed travel time variables 

and fixed parameters for cost and turn variables.  

 When estimates of the MPSCL models are considered, the value of congestion is on 

average equal to 1.50 in the peak periods with an interval of 1.36 to 1.60 at the 90% confidence 

level, and 1.26 in the off-peak periods with an interval of 1.21 to 1.31 at the 90% confidence 

level. The estimated values of congestion from the current RP study for the peak periods are in 

line with previous findings from Danish SP studies that estimated value of congestions 

between 1.31 and 1.65 in congested conditions (Nielsen, 2004; Nielsen et al., 2002; Fosgerau, 

2006) and are lower than previous results from another Danish RP study that calculated values 
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between 1.65 and 2.00 in congested conditions (Rich and Nielsen, 2007). Notably, no previous 

Danish studies examined less congested conditions or considered reliability. The estimated 

values of congestion for the peak periods are also in agreement with previous findings from the 

United Kingdom (Abrantes and Wardman, 2011) and Australia (Rose et al., 2008). The 

estimated values are generally lower than the ones from other RP studies and more in 

agreement with the ones from a variety of SP studies in various regions (Wardman and Ibañes, 

2012).  

 When the estimates of the MPSCL models are considered and the average levels of 

congestion are factored, the value of reliability ratio is on average equal to 1.53 in the peak 

periods with an interval of 1.26 to 1.75 at the 90% confidence level and 1.49 in the off-peak 

periods with an interval of 1.29 to 1.67 at the same confidence level. These ratios suggest that 

the marginal rate of substitution between travel time reliability and total travel time does not 

vary across periods and traffic conditions, with the obvious caveat that the absolute values are 

higher for commuters experiencing possible penalties for being late and consequently possible 

time pressure. Notably, these are the first value of reliability ratios estimated in the Danish 

context. The estimated ratios are lower than the ones from some RP studies (Lam and Small, 

2001; Small et al., 2005; Bhat and Sardesai, 2006) and more in accordance with the ones from 

a variety of SP and RP studies (Small et al., 1995; Small et al., 1999; Liu et al., 2007). In 

contrast with the value of congestion, no clear disagreement exists here with other RP studies 

or agreement with previous SP studies. 

 Some limitations of the current study should be acknowledged. In relation to data, the 

procedure for the calculation of travel time reliability would benefit from a larger collection of 

speeds. However, the current study is the first to exploit large amounts of data from cheap and 

enhanced technology to estimate jointly the value of congestion and the value of reliability 

from observed behavior, and the limitation may be considered marginal when the results are 

examined. From the perspective of the models, the selection of a mean-variance model is 

driven by data availability of observed travel time distributions rather than theoretical 

considerations. However, Bates et al. (2001) have discussed and Fosgerau and Karlstrom 

(2010) have shown theoretically that the scheduling model can be approximated by a mean-

variance model under reasonable conditions. From a general perspective, the representation of 
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heterogeneity would benefit from both collection of socioeconomic characteristics of the 

drivers and estimation of a latent class model to provide insight into the differences in value of 

time, congestion and reliability across the population. However, given that the data in the 

current study were collected for various purposes, this endeavor is left for further research.  

 In summary, the current study provides valuable information on the value of congestion 

and the value of reliability in different traffic conditions and periods. Furthermore, it suggests a 

roadmap for exploiting the growing amount of information becoming available through the 

high penetration of cheap and efficient technology that collects data about travel times and 

speeds on the world’s networks. Moreover, the continuous need in large-scale models for better 

and more insightful information seems to have a potential application by having linear-in-

parameter utility functions that may be used within traffic assignment models that would 

improve their behavioral realism through consideration of not only travel time but their 

components in the free-flow, congested, and reliability parts. Possible research directions 

include the use of these utility functions within traffic assignment, the estimation of observed 

heterogeneity by collecting information about socioeconomic characteristics of the drivers and 

their trip purposes, and the consideration of alternative decision paradigms such as 

lexicographic and regret minimization behavior. 
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Abstract: The aim of this paper is to remove the known limitations of Deterministic and 

Stochastic User Equilibrium (DUE and SUE), namely that only routes with the minimum cost 

are used in DUE, and that all possible routes are used in SUE regardless of their costs. We 

achieve this by combining the advantages of the two principles, namely the definition of 

unused routes in DUE and mis-perception in SUE, such that the resulting choice sets of used 

routes are equilibrated. Two model families are formulated to address this issue: the first is a 

generalised version of SUE permitting bounded and discrete error distributions; the second is a 

Restricted SUE model with an additional constraint that must be satisfied for unused paths. The 

overall advantage of these model families consists in their ability to combine the unused routes 

with the use of random utility models for used routes, without the need to pre-specify the 

choice set. We present model specifications within these families, show illustrative examples, 

evaluate their relative merits, and identify key directions for further research. 

 

Keywords: Choice Set; Random Utility; Traffic Assignment; Stochastic User 

Equilibrium. 
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1 INTRODUCTION 

The Stochastic User Equilibrium (SUE) traffic assignment model was first proposed as an 

approach for investigating congested road networks by Daganzo and Sheffi (1977). Though not 

a necessary requirement, Daganzo and Sheffi gave the model theoretical appeal by basing it on 

the Random Utility Model (RUM), a well-known approach for modelling the discrete choice 

behaviour of agents. RUM permits the inclusion of random error structures which may be used 

to capture the uncertainty of travellers in terms of perception errors, and the uncertainty of the 

modeller in terms of unobserved attributes or unobserved heterogeneity. In addition, when the 

variance in the error terms approaches zero, SUE is able to approximate Deterministic User 

Equilibrium (DUE, Wardrop, 1952) to an arbitrary accuracy, and so it has a claim to be a 

generalisation of DUE (Baillon and Cominetti, 2008; Cominetti et al., 2012). 

 Though originally proposed with only logit (Fisk, 1980; Miyagi, 1985), probit (Daganzo, 

1979, 1982) and potentially nested logit (Williams, 1977) models in mind, the SUE approach 

has since been extended to accommodate a range of alternative choice models within the RUM 

family. However, a common feature of both the original logit-/probit-based modelds and their 

later developments/generalisations is (as remarked by Damberg et al. (1996), in relation to the 

logit model) ‘that of every route receiving a positive flow in the equilibrium state, regardless of 

its travel cost’. While only considering actual minimum cost routes, as in DUE, seems difficult 

to justify, moving to a case where all routes are used seems equally questionable. 

 To investigate the seriousness of this point, consider the well-known and frequently 

studied Sioux Falls network (LeBlanc et al., 1975). Using the DUE link travel costs1, we 

randomly generated a sample of paths which are unused in the DUE solution by replicating 

10,000 times the following procedure for each Origin-Destination (OD) movement: i) 

perturbing the DUE link travel costs with a Normally distributed error (with a variance = DUE 

link cost); ii) performing a shortest path search on the perturbed costs; iii) storing this path if 

not previously generated, and if its actual (unperturbed) cost is greater than the DUE route cost. 

                                                 
1 Link flows and travel costs were downloaded on December 10 2012 from the web-page of Professor Hillel Bar-
Gera (http://www.bgu.ac.il/~bargera/tntp/): The solution is an approximate DUE solution, with an Average Excess 
Cost (normalised gap) of 3.9 · 10-15. 
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For the resulting set of distinct unused paths, we calculated their relative travel cost with 

respect to the DUE travel cost on the corresponding OD movement. The frequency distribution 

of the relative travel costs for unused paths, across all OD movements, is illustrated in Figure 

1.  

 
Figure 1 – Distribution of relative travel costs of random sample of unused DUE paths. Share of sampled paths as 

function of path cost relative to cost on corresponding minimum cost path 

 It can be seen that there are a significant number of unused paths with travel cost only a 

little greater than the travel cost of the used routes from the DUE solution. In reality, travellers 

may not perceive these paths as more costly (due to their mis-information or the modeller not 

being able to capture their personal preference structure in the specification of the cost 

function), and consequently we may expect travellers to use them, which they will not in the 

DUE model. On the other hand, there is a significant right-hand tail of unused routes which are 

between two and seven times as costly as the used routes from the DUE solution, yet all such 

routes should be used in the case of a perfect SUE solution, however circuitous and seemingly 

implausible is the route. While SUE will only assign small amounts of demand to the most 

costly routes, their existence means that at least in principle any SUE algorithm has the aim to 

consider all such routes, resulting in high computational requirements. 
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 These issues are particularly evident in large-scale network models, which are becoming 

increasingly common, spanning the regional (e.g., Bar-Gera et al., 2012; Ben-Akiva et al., 

2012; Kumar et al., 2012), national (see, e.g., Lundqvist and Mattson, 2001), and transnational 

scales (e.g., Burgess et al., 2008; Hansen, 2009; Petersen et al., 2009), which lead to extremely 

large feasible route choice sets. It is useful to imagine a network construction process for such 

a problem, in which we begin with a city network and then ‘grow’ it to a regional scale. At 

each step of the growth, new links are added, and every OD movement may have potential new 

routes which should theoretically attract flow at the SUE solution, however unattractive the 

route may seem. In this way, SUE is not as ‘scaleable’ as DUE; we can add unappealing routes 

to a DUE solution, and as long as the travel costs are higher than any used route, the solution 

will be unaffected. 

 In the present paper, and a companion paper (Rasmussen et al., 2014), we are particularly 

interested in developing a theoretical foundation for SUE-style approaches which does not 

suffer from such scaleability problems. Of course we are aware that practical solution 

algorithms, after a finite number of iterations, will typically produce an estimated SUE solution 

which includes only a subset of the available routes. However, such algorithms are an 

undesirable way of addressing the problem for several reasons. Firstly, the number of used 

paths is typically directly connected to the number of iterations, and so we confound the 

problem of convergence to the desired (SUE) conditions with the issue of which permitted 

paths it might be reasonable to use. Secondly, it means that the paths that are used are sensitive 

to the initial conditions and to the algorithm adopted. Thirdly, as we solve the problem only at 

the algorithmic stage, we do not have a criterion for judging whether one subset of used paths 

is more reasonable than another (as we do in DUE), since all that we know from SUE is that all 

permitted paths should be used.  

 An alternative way of addressing this problem would be to consider it at the model 

specification stage, in terms of the paths that are permitted. At one extreme, in a sense 

progressing in the opposite direction to the present paper, Bell (1995), Akamatsu (1996) and 

Maher and Hughes (1997) argue for a model in which path restrictions are lifted, so that even 

paths with multiple cycles are (implicitly) assigned some flow; they this has the advantage of 

avoiding any path enumeration. From a quite different viewpoint, Bovy (2009) argues for the 
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behavioural realism of models in which only a subset of all paths is permitted, stating that 

people do not choose their path from the full Universal Choice Set of alternatives, but rather 

from a Master Choice Set of paths considered relevant. To this end, several studies have 

developed methods to pre-generate a fixed Master Choice Set, such as distance-bounded 

enumeration (Leurent, 1997), constrained enumeration (Friedrich et al., 2001; Prato and 

Bekhor, 2006), probabilistic generation techniques (Cascetta and Papola, 2001; Frejinger et al., 

2009) and various deterministic or stochastic shortest path algorithms (e.g., Dijkstra, 1959; 

Sheffi and Powell, 1982; Ben-Akiva et al., 1984).  

 While the objective of using more limited path sets accords with our present study, we 

believe there are several disadvantages to SUE models based on a pre-generated Master Choice 

Set: 

 Path generation methods typically require as input an estimate of level-of-service variables 

in order to generate plausible paths. These might be estimated by observing on-street travel 

times, using values generated by another model (e.g., DUE travel costs), or using fixed 

measures as a proxy (e.g., distance, free-flow speed). Regardless of the adopted method, 

an inconsistency problem arises, as the travel costs assumed for choice set generation will 

not be the same as those arisen from solving for SUE based on that choice set. 

 The pre-defined choice set may exclude path options that, having solved for SUE on that 

choice set, would seem to be attractive based on the link travel costs of that solution. 

While it is undoubtedly true that travellers in real-life are not aware of all available paths, 

we have no independent evidence for excluding such apparently viable paths from 

consideration. 

 Several of the methods are based on Monte Carlo simulation, which introduces a lack of 

repeatability in the final estimated solution due to this additional source of randomness. 

 The notion of a fixed Master Choice Set implies that the set of considered paths is 

independent of any policy measure, whereas plausibly infrastructure improvements or 

tolling may make attractive some previously unattractive alternative paths or vice versa. 
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 With these comments in mind, the present paper considers how we might consistently 

integrate the problem of distinguishing used and unused paths within the theoretical 

framework of SUE. The aim is to define not only an equilibrated flow solution but also an 

Equilibrated Choice Set in which the equilibrium conditions specify that some available routes 

should be unused, even at a perfect equilibrium (i.e., it has nothing to do with the limitations of 

finite iterations of a solution algorithm). In doing so, we aim to retain the basic simplicity and 

therefore applicability for large-scale problems that has made DUE so attractive in the past, in 

terms of its distinction between potentially used and definitely unused paths. We do this in a 

way that allows a connection with RUM and SUE. On the other hand, we aim to avoid an 

unappealing feature of SUE in assigning some traffic to all feasible paths, however 

unattractive, which is both behaviourally unrealistic and creates problems in devising 

convergent algorithms for large-scale networks.  

 The specific purpose of this paper is to set out two distinct methodological approaches 

for handling equilibrated choice sets in the framework of SUE, each approach leading to a 

family of techniques. Section 2 introduces the notation. Section 3 sets out the first approach, 

formulating a generalised version of SUE to admit a range of probability distributions. Section 

4 formulates an alternative approach, namely a Restricted SUE model in which the choice set 

equilibration is handled through additional constraints that must be satisfied by unused 

alternatives. In both sections 3 and 4, simple illustrative examples are used to communicate the 

key concepts. In section 5 we evaluate the relative merits of these approaches, including 

possible extensions to the basic models, and set out the key areas for development in each. 

Finally, in section 6, we draw the main conclusions and wider future research directions.  
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2 NOTATION AND REFERENCE DEFINITIONS 

We first introduce the basic common notation adopted in the paper. Most of this is the standard 

familiar notation for SUE problems, although two subtle and important variants are introduced 

and exploited later. We consider a network as a directed graph consisting of links a (a=1, 2,…, 

A) and origin-destination (OD) pairs m (m=1, 2,…, M). We define the demand dm for OD-pair 

m composing a non-negative M-dimensional vector d, the index set Rm of all2 simple paths 

(without cycles) for each OD-pair m, the number Nm of paths in Rm and the union R of the sets 

Rm. The route index sets are constructed so that R = {1, 2,…,N}, where 
1

M

m
m

N N


 .  

 Denote the flow on path r  Rm between OD-pair m as xmr and let 

 
1 211 12 1 21 22 2 1 2, ,..., , , ,..., ,..., , ,...,

MN N M M MNx x x x x x x x xx = be the N-dimensional flow-vector on 

the universal choice set across all M OD-pairs, so that the notation xmr refers to element number 

1

1

m

m
k

r N




  in the N-dimensional vector x. Denote the flow on link a (a=1, 2,..., A) as fa and let 

 1 2, ,..., ,...,a Af f f ff =  be the A-dimensional link flow-vector where fa refers to element 

number a in f. 

 The convex set of demand-feasible non-negative path flow solutions G is given by: 

 
1

: , 1, 2,...,
mN

N
mr m

r

G x d m M


 
    
 

x    (1) 

where N
 denotes the N-dimensional, non-negative Euclidean space.  

  

  

                                                 
2 We shall suppose that there are no pre-defined restrictions on the set of available routes, other than that they are 
acyclic, but our methods apply equally if Rm is pre-defined such that other routes are excluded, leading to some 
smaller Master Choice Set. We have avoided referring to this, so as not to confuse the reader between such pre-
defined exclusions from the choice set, and those paths that emerge as unused from the equilibration process 



 

 

157 

 Next, define δamr equal to 1 if link a is part of path r for OD-pair m and zero otherwise. 

Then the convex set of demand-feasible link flows is: 

 
1 1

: f , 1, 2,..., ,
mNM

A
a amr mr

m r

F x a A G
 

 
      
 

f x   (2) 

 In vector/matrix notation, let x and f be column vectors, and define  as the AN-

dimensional link-path incidence matrix. Then the relationship between link and path flows may 

be written as f = Δx . We suppose that the travel cost on path r for OD-pair m is additive in the 

link travel costs of the utilised links: 

 
1

( ) ( )
A

mr amr a
a

c t


  x x              (r  Rm; m = 1,2,…,M; Gx )    (3) 

 Define t(f) (t : R+
A  R+

A) as the vector of generalised link travel cost functions, and 

c(x) (t : R+
N  R+

N) as the vector of generalised route travel cost functions. Then the 

relationships between path and link flows, and between link and path costs, may be succinctly 

written as: 

 f = Δx    and   Tc(x) Δ t(Δx)     (4) 

 Our particular interest is in SUE models, which capture traveller heterogeneity and mis-

perceptions through first positing random utilities Umr for each route:  

  ( ) ; 1,2,...,mr mr mr mU c r R m M      x    (5) 

where  : , 1,2,...,mr mr R m M  ξ  are random variables following some given joint 

probability distribution, and  > 0 is a given parameter. We then define the following functions 

as the probability relations: 

 ( ( )) Pr( ( ) ( ) , )mr mr mr ms ms mP c c s R            c x x x          ; 1,...,mr R m M  (6) 

These relations express the probability that path r between OD-pair m will have a perceived 

utility greater than or equal to the utilities of all alternative paths in the universal set of routes 
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for that OD-pair, when the random utilities are ( )  c x ξ  and the generalised path travel 

costs are c(x) . 

 The two slight variants to the standard SUE formulation are introduced for their 

relevance in subsequent sections. Firstly, we define: 

 ( ( )) Pr( ( ) ( ) , )mr mr mr ms ms mQ c c s R            c x x x          ; 1,...,mr R m M  (7) 

with the only distinction with Pmr(c(x)) being the strict inequality inside the probability 

statement.  

Secondly, we define:  

   ( ( ) ) Pr ( ) ( ) , ; 1, 2,...,mr m mr mr ms ms m m mP R c c s R r R R m M               c x x x    

    (8) 

for any non-empty subset mR of mR (m = 1,2,…,M). That is to say, whenever such a subset is 

not specified, we suppose Pmr refers to the universal set. 

 Moreover, we define for completeness the reference concepts in network equilibrium 

analysis (see, e.g., Sheffi, 1985; Patriksson, 1994): 

Definition 1: Wardrop conditions 

For any OD movement, the generalised travel costs on all paths actually used are equal, and 

less than or equal to the cost that would be experienced by a traveller on any unused path for 

that OD movement. 

Definition 2: Deterministic User Equilibrium (DUE) 

The route flow vector x  G is a DUE solution if and only if, for some m (m = 1,2,…,M): 

 0 c ( ) 1,2,...,mr mr m mx r R m M     x   (9) 

 0 ( ) 1,2,...,mr mr m mx c r R m M     x     (10) 
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Definition 3: Stochastic User Equilibrium (SUE) 

Given probability relations Pmr(.) (r  Rm; m = 1,2,…,M) of the form given above, where  is a 

vector of continuous random variables, the route flow vector x  G is a SUE solution if and 

only if: 

 ( ( )) ( ; 1,2,..., )mr m mr mx d P r R m M   c x .  (11) 

3 STOCHASTIC USER EQUILIBRIUM WITH GENERAL ERROR DISTRIBUTIONS 

3.1 SPECIFICATION AND DEFINITION  

The generalised cost may be expressed as a function of several factors, and if travellers were 

asked about their perceptions of travel time or trip length, then two things are certain: they 

would not include  as a possibility, and they would give a round (likely whole-number) 

answer in whatever units they use. For such perceived factors, the reality is thus discrete and 

bounded. Many real-life phenomena are also discrete (e.g., due to the limitations of 

measurement equipment) and bounded, yet we choose to represent their likely values - for 

mathematical convenience - by continuous and unbounded variables. For example, we cannot 

measure vehicle speeds to a strictly continuous precision and we know that no infinitely fast 

vehicles exist, yet we might represent their probability distribution as a Lognormal distribution. 

In a similar way, when using RUM to represent travellers’ heterogeneity/mis-perception inside 

an SUE model, it has become standard practice to use continuous and unbounded distributions 

for the random error terms. However, this mathematical convenience comes at a price, namely 

the SUE model must assign some flow to all alternative routes in the Master Choice Set, 

however unattractive they are.  

 In order to address this issue, it is useful to first reflect on the behavioural assumptions 

underlying SUE, which are typically not stated in the way that the Wardrop conditions are as 

the foundation for DUE.  
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Definition 4: Stochastic User Conditions (continuous distributions) 

For any OD movement, the proportion of travellers on a path is equal to the probability that 

that path has a perceived utility greater than [or equal to] the perceived utility of all 

alternative paths. 

 The Wardrop conditions are written more as a plausibility test, they are not a definitive 

statement of the flows on alternative routes; even knowing some pattern of travel costs 

consistent with these conditions, we cannot even definitely state which routes are used - only 

those that are potentially used (those with equal minimum cost) and definitely unused (those 

with greater cost) - so we certainly have no chance to say with what proportions the routes are 

chosen. In contrast, the Stochastic User conditions make an explicit statement of the proportion 

of flow on alternative routes. This level of specificity emerges directly due to the assumption of 

a continuous error distribution in the RUM, since then the probability is zero of two routes 

being tied for maximum perceived utility. This also means that it is irrelevant whether we 

specify the condition with or without the ‘[or equal to]’ part of the statement. 

 We then propose a more general set of conditions, which make no premise on the form of 

the probability distribution of random error terms: 

Definition 5: General Stochastic User Conditions 

For any OD movement, the proportion of travellers on a path is: 

(i) than greater or equal to the probability that {that path has a perceived utility strictly 

greater than the perceived utility on all alternative paths}, and 

(ii) less than or equal to the probability that {that path has a perceived utility greater than or 

equal to the perceived utility on all alternative paths}.  

This definition captures the fact that, when there is a non-zero probability that the perceived 

utilities could be exactly equal, then there is not an exact equality definition for how proportion 

and probability may be related. In this way, (Def. 5) thus is more similar to the definition of 

Wardrop conditions (Def. 1). 
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Proposition 1 

The General Stochastic User conditions contain Wardrop’s conditions as a special case, when 

travellers make no perception errors (i.e. when discrete probability mass one is placed at zero 

perception error). 

Proof 

As defined earlier we suppose the deterministic part of utility being equal to – multiplied by 

the route travel cost, for scale parameter  > 0. When there are no stochastic elements in utility, 

comparing routes is invariant to  and without loss of generality we may assume  = 1. Thus, 

we can replace maximising perceived utilities in the General Stochastic User conditions with 

minimising travel costs. The probability that a ‘path has a perceived utility strictly greater the 

perceived utility on all alternative paths’ is then either 1 (if the path has a strictly lower cost 

than all other paths) or 0 (if its cost is greater than or equal to all other costs). Similarly, the 

second General Stochastic User condition translates to a probability 1 for a path if it has cost 

lower than or equal to the cost on all other paths, and 0 if is its cost is greater than all other 

paths. We can then consider three cases: (i) a path that has cost strictly greater than all other 

paths for that movement has flow proportion bounded below and above by 0, and therefore is 

zero (i.e., is unused); (ii) a path that has cost less than or equal to that of all other paths has 

flow proportion bounded below by 0 and above by 1 (i.e., it is potentially used, but may be 

unused); (iii) a path that has cost strictly less than that of all other paths has flow proportion 

bounded above and below by 1 (i.e., it is the only used path). Used paths are definitely in case 

(iii) and potentially in case (ii): in case (iii) there is only one used route, so clearly then all used 

routes have equal cost; if we identify the subset of routes to which case (ii) applies (which may 

be both used and unused), then the only way any route in this subset is no worse than any other 

route in the subset is if all routes in the subset have equal cost, and so certainly all used routes 

in this subset will have equal cost to one another. Thus, we have verified the first component of 

Wardrop’s conditions (‘travel costs on all paths actually used are equal’). Note also that, by the 

same argument, any unused path in this subset satisfying case (ii) must also have equal cost to 

the used paths in that subset; this satisfies the second component of Wardrop’s conditions 

(‘travel costs on all paths actually used are less than or equal to the cost that would be 
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experienced by a traveller on any unused path for that OD movement’). By construction, cases 

(i) and (iii) also satisfy this second component, thus completing the proof.   

 This result is significant as it implies that, within the framework of the General 

Stochastic User conditions, we have at least one special case that has unused alternatives; in 

contrast, the standard Stochastic User conditions for continuous-only error distributions cannot 

include this special case, and can only at best approximate Wardrop, and then only through 

assigning some flow to all paths. This leads us to posit the following formulation of an 

equilibrium solution corresponding to the General Stochastic User conditions. In fact, these 

conditions were mentioned in passing by Daganzo and Sheffi (1977), and in the midst of a 

proof by Sheffi (1985), but it seems that they were never proposed or explored as a model in 

their own right, and it seems their possibility has since been forgotten (and certainly their 

relation to dealing with equilibrated choice sets has not been explored). 

Definition 6: Stochastic User Equilibrium with General Error distribution (SUEGE) 

Given probability relations Pmr(.) and Qmr(.) (r  Rm; m = 1,2,…,M) of the form defined in 

section 2, the route flow x  G is a SUEGE if and only if: 

 ( ( )) ( ( )) ( ; 1,2,..., )m mr mr m mr md Q x d P r R m M     c x c x   .  (12) 

Proposition 2 

(i) Suppose that, in the definition of Pmr(.) and Qmr(.), the  : , 1,2,...,mr mr R m M    are 

discrete random variables, each with probability mass 1 at the value of zero. Then x is 

a SUEGE if and only if x is a DUE. 

(ii) Alternatively, suppose that the  : , 1,2,...,mr mr R m M    are continuous random 

variables. Then x is a SUEGE if and only if x is a SUE. 

Proof 

The fact that SUEGE contains DUE as a special case follows directly by applying (Prop. 1) at 

the route flows x and costs c(x). The fact that SUEGE contains SUE as a special case arises 

due to the fact that for continuous-only distributions ( ( ))mrP c x = ( ( ))mrQ c x , and so the only 

solution to the SUEGE inequality is ( ( ))mr m mrx d P  c x , i.e. SUE.     
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3.2 INSTANCES OF SUEGE MODELS 

SUEGE generalises both the standard DUE and SUE models. However, the existence of 

examples of SUEGE with unused paths has been shown only for the special case of DUE 

where the stochastic element disappears, not for SUEGE models with stochastic terms that 

incorporate unused alternatives. The existence of such examples would satisfy the aim of the 

present study to have an equilibrated (but non-universal) choice set. The two examples below 

establish the existence of such examples for the cases of discrete and continuous bounded error 

distributions. 

Example 1: SUEGE with discrete bounded error distribution 

Consider a network serving an OD demand of d1=100 and consisting of three parallel 

links/paths with separable link travel cost functions 

1 1 2 2 3 3( ) 8 /10 ( ) 18 /15 ( ) 25 / 50 ,t f t f t f     f f f  and hence route travel cost 

functions 11 11 12 12 13 13( ) 8 /10 ( ) 18 /15 ( ) 25 / 50 .c x c x c x     x x x  

Suppose that  = 1, and that the three discrete error distributions in the RUM are statistically 

independent between routes, and are given by: 

 
11 11

12 12

13 13

Pr( 0) 0.7, Pr( 5) 0.3,

Pr( 0) 0.6, Pr( 10) 0.4,

Pr( 5) 0.2, Pr( 0) 0.8.

 
 
 

   
   
    

  

Consider the flow x* = (70, 30, 0). The corresponding travel costs are c(x*) = (15, 20, 25). 

Then: 

 
11 11 11 12 12 13 13

11 11 12 12 13 13

( ( *)) Pr( ( *) max( ( *) , ( *) ))

Pr( ( *) max( ( *) , ( *) ))

Q c c c

c c c

     
  

          

       

c x x x x

x x x
  

and we consider the 23 = 8 states for the three error terms across the routes, adding the 

appropriate joint probability whenever the condition in the Q11 probability is satisfied. The 

states 1-8 for 11 11 12 12 13 13( ( *) , ( *) , ( *) )c c c       x x x  are respectively (–15,–20,–30), (–

15,–10,–30), (–10,–20,–30), (–10,–10,–30), (–15,–20,–25), (–15,–10,–25), (–10,–20,–25), (–

10,–10,–25). State 1 occurs (due to the independence assumption) with probability 
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0.7 0.6 0.2 0.084   , and the remaining seven state probabilities are 0.056, 0.036, 0.024, 

0.336, 0.224, 0.144, 0.096. Only states 1, 3, 5, 7 satisfy the condition 

11 11 12 12 13 13( *) max( ( *) , ( *) )c c c        x x x , and so:  

11 11 11 12 12 13 13

11 11 12 12

( ( *)) Pr( ( *) max( ( *) , ( *) ))

Pr( ( *) ( *) )

0.084 0.036 0.336 0.144 0.6.

Q c c c

c c

  
 

       

     
    

c x x x x

x x  

For P11 we have additionally states 4 and 8 that satisfy the equality condition, hence: 

11 11 11 12 12 13 13

11

( ( *)) Pr( ( *) max( ( *) , ( *) ))

( ( *)) 0.024 0.096 0.72.

P c c c

Q

         
   

c x x x x

c x
 

By repeating this process: 

 12 12 12 11 11 13 13( ( *)) Pr( ( *) max( ( *) , ( *) ))

0.056 0.224 0.28.

Q c c c         
  

c x x x x
 

 12 12( ( *)) ( ( *)) 0.024 0.096 0.4P Q   c x c x  

and finally: 

 13 13( ( *)) ( ( *)) 0Q P c x c x  

Hence, the SUEGE conditions would require the flow x* to satisfy (in addition to demand 

feasibility): 

 11 12 13100 0.6 * 100 0.72; 100 0.28 * 100 0.4; 100 0 * 100 0x x x              

i.e.: 

 11 12 1360 * 72; 28 * 40; * 0x x x     . 

Since the given x* = (70, 30, 0) satisfies this condition, it is indeed a SUEGE solution, and it 

notably consists of an equilibrated but non-universal choice set. We searched for alternative 

SUEGE solutions on the network but found that only the x* above exists. It is important to 

note however that while only one SUEGE solution exists for the example, several SUEGE 

solutions may exist for other networks. 
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Example 2: SUEGE with continuous bounded error distribution 

Again, consider a network serving an OD demand of d1=100 and consisting of three parallel 

links/paths, again with  = 1, and now with link cost functions: 

 1 1 2 2 3 3( ) 7.5 /10 ( ) 15 / 5 ( ) 25 / 50 ,t f t f t f     f f f  

Now suppose three continuous bounded error distributions in the RUM, again statistically 

independent between routes:  

 11 ~ Uniform(0,5), 12 ~ Uniform(0,10), 13 ~ Uniform(–5,0) . 

Consider the flow allocation x* = (75, 25, 0), with c(x*) = (15, 20, 25). In this case, the 

SUEGE conditions reduce to an equality-based (SUE) fixed point problem, and we need 

consider only the P functions: 

 11 11 11 12 12 13 13( ( *)) Pr( ( *) max( ( *) , ( *) ))P c c c         c x x x x . 

The three random utilities, 1 1( *)r rc  x  (r = 1,2,3), are thus distributed uniformly on the 

intervals (–15, –10), (–20, –10), and (–30,–25), and so for these random variables it is the case 

that: 

 12 12 13 13 12 12max( ( *) , ( *) ) ( *)c c c        x x x   

since the interval on which 13 13( *)c  x  is defined is greater than the interval on which 

12 12( *)c  x  is defined. Thus: 

11 11 11 12 12

11 11 12 12 12 12 12 12

11 11 12 12 12 12 12 12

( ( *)) Pr( ( *) ( *) )

Pr( ( *) ( *) ( *) 15) Pr( ( *) 15)

Pr( ( *) ( *) ( *) 15) Pr( ( *) 15)

1 0.5 0.5 0.5 0.75

P c c

c c c c

c c c c

 
   

   

     

              

              

    

c x x x

x x x x

x x x x
 

exploiting the uniformity of the distributions. 
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Following the same logic:  

 12 12 11 11 12Pr( ( *) ( *) ) 1 0.75 0.25 ( ( *))c c P         x x c x  and 

 13( ( *)) 0P c x  

thus confirming that x* = (75, 25, 0) is a SUEGE solution, and it notably consists of an SUE 

over an equilibrated but non-universal choice set. We have searched numerically (by grid 

search) for other SUEGE solutions on the network, but did not find any. Therefore we believe 

the solution x* above to be a unique solution in the example. 

 In conclusion, we have defined in the present section a formulation of SUE that permits 

both discrete and continuous, bounded and unbounded error distributions. We have shown that 

includes both Wardrop’s conditions/DUE and traditional SUE as special cases, and with simple 

illustrative examples have shown how it may indeed lead to solutions with equilibrated but 

non-universal choice sets.  

4 STOCHASTIC USER EQUILIBRIUM WITH RESTRICTIONS 

4.1 SPECIFICATION AND DEFINITION  

In section 3, we presented formulations of SUE that, by moving away from the 

continuous/unbounded error distributions traditionally associated with RUM theory, were able 

to capture equilibrated, non-universal choice sets within an SUE framework. A disadvantage of 

this approach, however, is precisely the fact that it departs from the well-understood and well-

researched range of choice models that incorporate continuous, unbounded distributions, such 

as logit, probit, path-size logit, and so forth. Therefore, as an alternative to the SUEGE models 

introduced in section 3, in the present section we explore the formulation of models that on the 

one hand retain the connection to these well-researched methods of representing choice across 

the used routes, but on the other hand includes equilibrium conditions that distinguish used and 

unused routes. 
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 The inspiration for these conditions derives from the Wardrop conditions; in order to 

understand this connection, it is helpful to first write the Wardrop conditions in a slightly 

alternative, but equivalent form: 

Definition 7: Wardrop conditions (alternative form) 

For each OD movement: 

(i) the generalised travel costs on all paths actually used are equal; 

(ii) the ‘reference cost’ is equal to the cost on any used path; 

(iii) the cost which would be experienced by a traveller on any unused path is greater than or 

equal to the reference cost as defined in ii). 

 This alternative definition introduces the notion of a ‘reference cost’ as a single value 

representing all used paths, as the benchmark against which to judge unused alternatives. For 

the Wardrop conditions, it is very clear what this reference cost must be, since all used paths 

have the same travel cost, and so introducing it seems an unnecessary complication. However, 

this turns out to be a key element to defining our new conditions, in a situation where the used 

paths have unequal travel costs. These conditions are a combination of (Def. 4) and (Def. 7): 

Definition 8: Φ-Restricted Stochastic User Conditions 

For each OD movement: 

(i) the proportion of travellers on any used path is equal to the probability that that path has 

a perceived utility greater than or equal to the perceived utility of all alternative used 

paths; 

(ii) the ‘reference cost’ is a value uniquely defined by some relationship Φ to the travel costs 

on the used paths; 

(iii) the travel cost which would be experienced by a traveller on any unused path is greater 

than or equal to the reference cost as defined in ii). 
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 In comparison with the Stochastic User conditions (Def. 4), it can be seen that condition 

(i) above overcomes one of the main limitations, in that they may only apply to a sub-network 

of the paths available. This is also true of SUE models applied to a pre-defined Master Choice 

set, but the key difference in (Def. 8) is that, at equilibrium, conditions (ii)/(iii) must be 

simultaneously satisfied alongside condition (i). That is to say, given that perceived utility is an 

affine function of travel cost, plus random errors, the three conditions above must be 

consistently satisfied, at the same travel cost levels. Thus, they do indeed yield an alternative 

mechanism for defining equilibrated, non-universal choice sets in an SUE framework. It is also 

worth remarking that the Φ-Restricted Stochastic User conditions, though owing their 

inspiration partly to the Wardrop conditions (Def. 7), are not as tightly defined, since there 

exist several alternative, plausible ways for defining the reference costs in condition (ii). That 

is to say, (Def. 8) defines a class of conditions that is as wide as the ways in which the 

relationship Φ may be defined.  

 A final remark on (Def. 8) is that these criteria may, in principle, be applied to a flow 

allocation produced by any method, and reported as a plausibility measure of the resulting flow 

pattern. For example, they could be applied to the iterations of a conventional path-based SUE 

solution algorithm, in which at any iteration typically only a subset of the available paths are 

used, as a sensible guide to whether some important plausible paths may still need to be 

included. Alternatively, they could be applied to an estimated SUE solution based on a pre-

defined Master Choice Set, in this case as a measure of the extent to which the estimated 

equilibrium costs on the network support the assumed Master Choice Set. However, henceforth 

in this section we explore the properties of an equilibrium model in its own right, based on the 

Φ-Restricted Stochastic User Conditions: 
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Definition 9:  -Restricted Stochastic User Equilibrium (RSUE( ))  

Suppose that we are given a collection of continuous, unbounded random variables 

 : , 1,2,...,mr mr R m M    defined over the whole choice set mR , and that for any non-empty 

subsets mR of mR  (m = 1,2,…,M), probability relations ( )mr mP Rc   are given mR by considering 

the relevant marginal joint distributions from  : , 1,2,...,mr mr R m M   . The route flow x  

G is a RSUE( ) if and only if for all r  Rm and m = 1,2,…,M: 

  0               ( )mr m mr m mr mx r R x d P R      c x    (13) 

   0               ( ) ( )mr m mr ms mx r R c c : s R      x x   (14) 

 The RSUE( ) conditions ensure that the restricted choice set contains only the used 

paths and that the Φ-Restricted Stochastic User conditions hold. Comparing the SUE 

formulation (Def. 9) to that for DUE (Def. 2), it can be seen that there are similarities: they 

both have one statement concerning utilised paths and one statement concerning non-utilised 

paths, but present several important differences.  

 Firstly, comparing the conditions on used paths, there is the use of perceived utility in 

RSUE( ) rather than actual travel costs in DUE; in this way, RSUE overcomes the main 

limitation of DUE, as it accounts for perception errors of path attributes by allowing traffic to 

be distributed to non-minimum cost paths, in order that the SUE conditions are satisfied on the 

restricted choice set of used paths. 

 Secondly, in the RSUE conditions we have a choice of how to define the operator Φ, 

whereas in the DUE model we do not. In fact, in the DUE model the variable m , even if 

defined as a free variable, must at equilibrium equal the travel cost on any used path for OD 

movement m, and we do not need to add any additional constraint to ensure that m  is related 

to the path costs in this way. In the RSUE model, no such condition emerges, and we then need 

an explicit definition of how the reference OD travel cost is related to the path travel costs of 

used paths. In addition, since in RSUE used paths will typically not have the same travel cost, 

there is some leeway in how precisely to define Φ. 
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 It should be noted that, in the RSUE definition (Def. 9), we consider only RUM models 

with continuous and unbounded error distributions. As noted in section 3, under such an 

assumption all alternatives in the RUM (in this case, those in mR ) will have a non-zero 

probability of being chosen. Thus, condition (14) will never be relevant for a path that is 

subject to the RUM, i.e. in mR , since such a path will always attract a positive flow. This 

makes the separation of used/unused paths coincide with the separation of those paths subject 

to the RUM and not subject to it.  

 A final remark is on the relation of the RSUE( ) model to conventional notions of 

equilibrium in networks. Unlike the SUEGE model, the RSUE( ) model does not contain 

DUE as a special case, in spite of the similarities in the specification of RSUE( ) and DUE. 

This is due to the fact that we restrict the attention in RSUE( ) to choice models which have 

continuous random utilities on the used paths, and thus the probability of two paths being 

exactly equal in terms of perceived utility is zero, whatever continuous distribution is adopted 

for the error terms. RSUE( ) does, however, contain SUE as a special case (regardless of the 

specification of  ). This may be seen by setting m mR R  in the RSUE definition (Def. 9), 

meaning that there are no paths for which condition (14) is tested, and condition (13) is simply 

an SUE condition on the universal choice set. This is true for any problem, and therefore we 

can guarantee existence of at least one RSUE( ) solution by exactly the same conditions as 

those that guarantee existence of a SUE solution. In particular, Cantarella (1997) proposed a 

Fixed-Point formulation of SUE, and using Brouwer’s theorem he showed that a solution exists 

if the choice function and the cost-flow functions are continuous, the link flow feasible set F is 

non-empty (i.e., at least 1 path exists between OD-pairs m for which dm>0), compact and 

convex, and the link flows resulting from the flow network loading map (expressing link flows 

in terms of link costs) are always feasible.  

4.2 INSTANCES OF RSUE( )MODELS  

A key question that appears is the definition of Φ. Since in condition (14) the actual travel cost 

on an unused alternative must be compared with the actual travel costs on used alternatives, 

and since these unused alternatives are not subject to the random utility specification, it seems 

reasonable that Φ must map to something that makes sense in terms of the actual travel costs 
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(rather than the randomly perceived utilities). Thus, while it might seem a possibility, it is not 

so sensible that Φ is a satisfaction function (expected maximum perceived utility, such as 

logsum for multinomial logit) over the used alternatives, as then we are in the ‘scale’ of 

perceived utility as opposed to actual travel cost. An alternative, then, might be to define Φ as 

the average or median travel cost of the used alternatives, but there are surely many 

possibilities that might be explored. In our case, we focus on two example possibilities 

(without wishing to rule out others), each seemingly having its own attractive features. 

 The two particular examples are the RSUE(min) model, obtained by defining for any 

non-empty set B: 

    =min :B b b B     (15) 

and the RSUE(max) model, obtained by defining: 

    max :B b b B    .    (16) 

 An attraction of the RSUE(min) model is that, apparently, it leads in the direction of a 

computationally tractable method. The reason for believing this is as follows. With the min 

operator in equation (14), then if we are given some candidate flow pattern, and wish to verify 

whether it satisfies condition (14), then we have a form which is relatively easy to verify using 

standard computational tools for networks. In particular, given some path flow allocation and 

resulting network link costs, one can use some standard shortest path algorithm (for each OD 

movement) to identify the minimum cost path of any kind on the network. If the cost on this is 

(strictly) less than the cost on the currently minimum cost used route (for the corresponding 

OD-pair), then condition (14) is not satisfied.  

 Thus, the RSUE(min) model is in some sense the logical combination of DUE and SUE. 

However, it has a disadvantage in that it allows for traffic to be assigned to paths with actual 

travel costs greater than the actual travel costs of paths which are not utilised. From a 

behavioural point of view, one might question the plausibility of this, and in this respect the 

RSUE(max) model has an advantage.  
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 The RSUE(max) model requires that no path is unutilised if it has an actual travel cost 

that is lower than or equal to the actual travel cost on the longest utilised path. While this 

seems behaviourally more defensible, it may lead to a less tractable computational model. 

Certainly, property (18) is more difficult to verify from a computational perspective for the 

RSUE(max) model than it is for RSUE(min), yet still there are standard network analysis tools 

for doing so. In particular, given some path flow allocation and the resulting network link 

costs, a standard tool can be used (for each OD movement) to identify the current k shortest 

paths (where k is the number of used paths). If there among these exists any currently unused 

path on which the cost is (strictly) less than the cost on currently maximum cost used route (for 

the corresponding OD movement), then condition (14) is violated. Clearly, the computational 

effort involved in solving k-shortest path problems and identifying any unused paths among 

these is significantly greater than that required for solving standard shortest path problems, and 

so verifying that the RSUE(max) conditions are satisfied is much more demanding than the 

verification of the RSUE(min) conditions. 

Proposition 3  

Any RSUE(max) solution is also a RSUE(min) solution. An RSUE(min) solution may not, 

however, necessarily fulfil the RSUE(max) conditions. 

Proof 

Suppose a flow allocation satisfies the RSUE(max) conditions. Then from conditions (14) 

when Φ is the max operator, any unused path must have a travel cost greater than or equal to 

the maximum cost used path. By definition, the maximum cost used path must have cost at 

least as great as the minimum cost used path, and so property (14) is also satisfied when 

instead Φ is the min operator. Property (13) of RSUE(max) is the same regardless of the choice 

of Φ, and so we have shown that the flow allocation must also satisfy the RSUE(min) 

conditions. For the converse situation, suppose that a flow allocation satisfies the RSUE(min) 

conditions, and in addition has an unused path which has a cost less than the maximum cost of 

any used path. Then the RSUE(max) conditions are violated as illustrated in the following 

Example 3.   
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Example 3 

In this example we explore the multiplicity of solutions in a simple example in which we can 

exhaustively check the conditions for all non-empty subsets mR of the universal choice set mR . 

We illustrate that RSUE solutions do indeed exist with an equilibrated but non-universal choice 

set and that RSUE(min) solutions may violate the RSUE(max) conditions.  

 Consider the network also considered in Example 1 and Example 2, serving an OD 

demand of d1=100 and consisting of three parallel links/paths, now with link cost functions

1 1 2 2 3 3( ) 8 /10 ( ) 13 /15 ( ) 15 / 50t f t f t f     f f f , 

Suppose that the choice model for used routes is a multinomial logit model with  = 1. With 

such a small network, it is possible to identify all 7 possible choice sets, and for each choice set 

to find an SUE solution by some traditional path-based solution method. We may then 

subsequently check each of these 7 possibilities with respect to the RSUE conditions. Clearly 

such an exhaustive search of possible choice sets would be infeasible for large-scale networks, 

but this example allows investigating the existence and multiplicity of RSUE solutions. The 

solution method is a path-based MSA (Sheffi and Powell, 1982) with 10,000 iterations and the 

solutions are shown in Table 1. 

Table 1 – SUE solutions for all possible choice sets. Note: Hatch defines the choice set: Hatch/no hatch if path 

excluded from/included in the choice set  

  
Conf. 1 

 1 1r rc x  
Conf. 2 

 1 1r rc x  
Conf. 3 

 1 1r rc x  
Conf. 4 

 1 1r rc x  
Conf. 5 

 1 1r rc x  
Conf. 6 

 1 1r rc x  
Conf. 7 

 1 1r rc x  

Path 1 13.9/59.1 18.0/100.0 8.0/0 8.0/0 14.6/66.0 14.9/68.5 8.0/0 

Path 2 14.7/26.0 13.0/0 19.7/100.0 13.0/0 15.3/34.0 13.0/0 16.2/47.4 

Path 3 15.5/14.8 15.0/0 15.0/0 17.0/100.0 15.0/0 15.6/31.5 16.1/52.6 

RSUE(min) 
YES 

(=SUE) 
NO NO NO YES NO NO 

RSUE(max) 
YES 

(=SUE) 
NO NO NO NO NO NO 

 

 For all cases, SUE has been found among utilised paths. This means that the first 

condition (13) of the RSUE(min) as well as the RSUE(max) definition is fulfilled in all cases, 

conditional on mR  being the set of utilised paths. The second condition is fulfilled if the actual 

travel cost of paths not in the choice set is not shorter than the actual travel cost on the shortest 

(longest) utilised path for the RSUE(min) (RSUE(max)). Note that this is always fulfilled in 
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the case where all paths are in the choice set, and the traditional SUE will always be a RSUE 

solution. From Table 1 we see that there exist unused paths which are shorter than the shortest 

(longest) used path for configurations 2-4 and 6-7, and these do thus not fulfil the second 

RSUE(min) (RSUE(max)) condition and do therefore not constitute RSUE(min) (nor 

RSUE(max)) solutions. The violation of the RSUE(max) conditions could have also been 

realised by using (Prop. 3) and the knowledge that the RSUE(min) conditions are violated. 

 However, since  1 1min ( ) : s min(14.6,15.3) 14.6sc R  x   for configuration 5 with 

paths 1 and 2 used (i.e. 1R ={1,2}), and since 15.014.6 then the second RSUE(min) condition 

is fulfilled for configuration 5 that consequently gives a RSUE(min) solution. Assuming 

instead a max operator for Φ, then the second condition (14) requires that any unused paths 

have cost at least as great as the maximum cost of a used path (= 15.3 in this case), and since 

15.0 < 15.3 the flow solution where paths 1 and 2 are used is not a RSUE(max) solution.  

 From this example we can see that RSUE solutions exist with equilibrated but non-

universal choice sets, and that solutions that satisfy RSUE(min) may not satisfy RSUE(max) 

for a given problem. In the example we did not find any RSUE(max) solutions using a non-

universal choice set. We could however imagine such a solution by adding a fourth non-

overlapping route with free-flow travel cost of e.g. 20. In such a case configuration 1 (the 

current full SUE solution) would be a RSUE(max) with equilibrated but non-universal choice 

set, as a cost of 20 on the unused route would be higher than the most expensive used route 

(=15.5) causing the second RSUE(max) condition to be satisfied.  

 In the example we have focused on the RSUE(min) and RSUE(max), but surely other 

formulations of Φ could be investigated. One such could be the RSUE(avg) discussed earlier, 

where the operator is average travel cost of the used alternatives. This seems to ‘mediate’ 

between the RSUE(min) and RSUE(max) by putting a stricter condition on the cost on unused 

paths than the RSUE(min), however not as strict as the RSUE(max). In the example, 

configurations 1 and 5 satisfies the RSUE(avg) conditions, thus coinciding with the possible 

RSUE(min) solutions. It is important to note that RSUE(min) solutions does not always fulfil 

the RSUE(avg) conditions; Imagine adding a fourth alternative with free-flow travel cost of 

14.8. In such a case configuration 5 using paths 1 and 2 would still be a RSUE(min) solution 

but not a RSUE(avg) solution, as the operator specifies a threshold cost of 14.95.  
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5 ANALYSIS OF SUEGE AND RSUE MODELS 

After presenting two alternative frameworks and models for representing route choice based on 

RUM theory, both of which lead to an equilibrated but potentially non-universal choice set, we 

analyse and compare these approaches in terms of three key areas: (i) applicability and 

potential for calibration, (ii) theoretical issues, and (iii) potential for devising solution methods 

for large-scale networks.  

5.1 APPLICABILITY AND POTENTIAL FOR CALIBRATION 

The applicability and calibration potential of SUEGE and RSUE models requires considering 

first what the ‘stochastic’ terms might be useful for representing. In particular, we shall make a 

case that each model may be suitable for representing quite different kinds of variation.  

 Considering the SUEGE models, the pertinent cases are those in which the error 

distribution in the random utilities is bounded (either discrete or continuous). In such cases, the 

lower and upper bounds of the random utility distribution, and hence those of the error term, 

play the key role in distinguishing used from unused routes. The important question then 

arises: in what circumstances might it be (a) reasonable to assume such bounds, and (b) 

possible to estimate the bounds. This connects directly to what the error term may be capturing, 

for which there are several possibilities (see Watling et al. (2013) for a further discussion of 

this issue in a somewhat different context).  

 Two possibilities are that the random error is capturing (i) unobserved factors that might 

affect route choice, other than those measured in the generalised travel cost, or (ii) unobserved 

heterogeneity across the population of travellers. In these cases, we cannot directly estimate the 

bounds on the distributions of the error term, but supposing for example that we had data on 

routes actually chosen by OD movement, an indirect method could be (i) specify the error 

distribution as a bounded parameteric family of distributions, and (ii) estimate the parameters 

by finding the best fit between the observed route distributions and that distribution of routes 

that would occur under the SUEGE model with those parameters. Such a problem could, for 

example, be addressed by using some least squares metric as a goodness-of-fit measure, and 

then maximising the fit subject to a SUEGE constraint (a kind of Mathematical Program with 

Equilibrium Constraints, MPEC).  
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 Although this method (for indirectly calibrating unobserved phenomena) sounds 

potentially feasible, there are several significant difficulties with it. It is not clear what 

goodness-of-fit measure would truly focus on the boundary of distinguishing lightly used from 

unused routes. If our focus is on identifying which routes are not used at all, it seems we would 

need to observe all trips, rather than estimating route proportions from a sample. Moreover, it 

is still rather unusual to have route-level information available for network problems; with only 

link flow information, we are one stage further removed from the ‘direct observation’ 

described above. 

 A third possible interpretation of the random error in the utilities would be that they are a 

representation of perception errors of the travellers. The SUEGE model with discrete bounded 

distributions seems particularly attractive to represent this, as travellers will typically think of 

travel times or other measures in whole units (e.g. minutes), or even further rounded. It seems 

possible to determine the distributions to use through experiments where a sample of travellers 

are asked to estimate travel times (both pre- and post-trip), which can then be compared with 

independent measurements of the actual trip times. 

 Considering the RSUE models, there are two quite distinct mechanisms to consider for 

calibration: the RUM for dispersing traffic among used routes, and the operator Φ for 

distinguishing used from unused routes. The RUM element is effectively the same as for 

conventional SUE models, and so this element effectively offers no new challenge over-and-

above calibrating a conventional SUE model based on RUM models. The new challenge for 

RSUE is in specifying a sensible Φ operator that allows the modeller to restrict the assumed 

choice set to a manageable size, and is not about traveller perception or unobserved factors. In 

this respect, we can make comparisons with actual travel costs (e.g. travel times) observed on 

the network, separately from the issue of perception.  

 For example, if we suppose that the only element of travel cost were travel time, and that 

we have observations of link travel times across a network, then we could assume and apply an 

operator   to the observed travel times, and compare the ranking of routes with the distinction 

between used and unused routes as predicted by a RSUE(  ) solution. If we also have 

observations of actual routes chosen by travellers, then we might verify whether the actually 
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chosen routes are all used routes in an RSUE solution, what is the distribution of travel costs 

across these chosen routes, and how does it compare with the distribution of travel costs on 

used routes in the RSUE solution for a given problem. The answers to these questions vary 

under different assumed   functions, and under different assumed choice models for a given 

problem. 

 Summarising, there is potential for calibrating both SUEGE and RSUE models, 

especially when more route-level data become available in the future through increasingly 

popular and ever more precise tracking devices. In both cases, this tracking needs to penetrate 

to quite a large fraction of travellers, if we are truly to distinguish lightly used from completely 

unused routes. The SUEGE models seem particularly appropriate for modelling traveller 

perception errors, whereas RSUE is probably more suited to capturing unobserved factors and 

unobserved heterogeneity. The RSUE models seem more straightforward to apply in the short 

term, as extensions of existing and calibrated SUE models, especially if supplemented with 

some information on routes actually chosen. 

5.2 THEORETICAL CONSIDERATIONS 

To the best of the authors’ knowledge no work exists, establishing the existence and 

uniqueness of SUEGE solutions, other than that for the traditional SUE case of unbounded and 

continuous distributions (e.g., Cantarella, 1997). In the case of RSUE models, we can 

guarantee existence of at least one solution under the same condition as continuous, unbounded 

SUE solutions exist (Cantarella, 1997), but what we are really interested in is the existence of 

other RSUE solutions which do not use the full choice set.  

 Thus while it seems behaviourally implausible that travellers are error-free and identical 

in their perceptions of travel cost (as in DUE), or use all available paths (as in SUE), the price 

we pay for the additional plausibility in SUEGE or RSUE is a model with non-unique 

solutions, which may not be so convenient for cost-benefit analysis. In defence of these new 

models we would offer several arguments. Firstly, uniqueness of DUE and SUE solutions is 

only known under quite limited circumstances, which break down when we have problems 

with non-additive path costs, within-day dynamics, junction interactions, multiple vehicle 

types, responsive control or non-separable/monotone variable demand models. In fact 
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examples of multiple solutions are known to exist in many such cases (e.g., Watling, 1996; 

Iryo, 2011). Secondly, there has been recent work that has deliberately sought to generate non-

unique solutions, through multi-objective route choice modelling (Wang and Ehrgott, 2013; 

Wang et al., 2014). While the intention of the present study is to postulate more realistic 

models, rather than non-unique solutions, we may see the models as a way of generating 

reasonable candidate solutions. Thirdly, the SUEGE and RSUE models contain SUE or DUE 

as special or limit cases and hence, in a calibration process, it is legitimate to consider whether 

SUE or DUE offer a better fit to observations. If they do, they may be preferred, and so we do 

not rule out their use. Fourthly, traditional equilibrium models are heavily calibrated on link 

flow data (even the OD matrix). When the non-uniqueness we are referring to leads to different 

link flow solutions, then we may (at the calibration stage) choose between alternative candidate 

SUEGE/RSUE solutions based on such conventional link data. Fifthly, in the future, as it 

becomes more typical to have access to data from mobile/GPS devices, then the focus of 

calibration of equilibrium models may switch to a more route-based one. In such a case, there 

is an even better chance to resolve the non-uniqueness at the calibration stage, given several 

candidate solutions with different equilibrated choice sets – see the discussion of section 5.1. 

 A wider issue that has had great influence on the possibility to establish theoretical 

properties of network equilibrium models (as well as to devise efficient solution methods) is 

the kind of mathematical formulation adopted (e.g., convex optimisation problem, variational 

inequality, fixed point problem). It is therefore appropriate to examine the formulations 

adopted for the models presented. In the case of SUEGE with a continuous bounded error 

distribution, the resulting problem is also an SUE problem, and so is a fixed point condition. 

Alternative formulations of SUE (e.g., optimisation problem) have been established under 

certain assumptions on the error terms, but these are specific to particular models with 

unbounded errors, and so do not transfer unless specifically proven. The case of a discrete error 

SUEGE distribution is more complex. It is certainly possible to convert the inequality 

constraints (12) into equalities, by adding appropriate slack variables (two per route), and thus 

define a fixed point equality condition. However, since we suspect there may be several 

solutions, an alternative approach would be to consider the inequalities (12) as constraints to 

an optimisation problem, namely to minimise g(x) subject to x satisfying (12). With g(x) = 
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constant, solutions to such a problem define the full solution set, while g(x) = xr (or g(x) = -xr) 

would define for some r the lower (or upper) bound on the flow on route r in the solution set, 

and 
1 1

( ) ( )mM R

rm r
g x

 
  x  (where (y) = 1 if y > 0, 0 otherwise) would define a SUEGE 

solution using the fewest number of routes.  

 In the case of RSUE models, the definitions (13)/(14) appear rather complex, but a more 

parsimonious formulation can be gained using the (.) indicator function introduced above. We 

further denote 1 2( ) ( ( ), ( ),..., ( ))ny y y  δ y  and then re-write (14) as: 

 (1 ( )) ( ( ) ( ( ), ( ))) 0 , 1,2,...,mr mr mx c r R m M      x c x δ x   

In vector notation:  

 ( ( )) ( ( ) ( ( ), ( )))  1 δ x c x Φ c x δ x 0   

where the symbol ◦ denotes the Hadamard product (element-wise multiplication): 

 a b = diag(a) b . 

Similarly we can re-write (13) as (with a different definition of Pmr note): 

 ( ) ( ( ( ), ( ))) 0 , 1,2,...,mr mr m mr mx x d P r R m M       c x δ x  

where for all r  Rm (i.e. not just those that are subject to the RUM) and m=1, 2,..., M 

( ( ), ( )) ( ) Pr( ( ) ( ) such that ( ) 1)mr mr mr mr ms ms m msP x c c s R x                c x δ x x x  

or in vector notation: 

 ( ) ( ( ( ), ( ))) δ x x Γd P c x δ x 0     

where  is the path-OD incidence matrix (i.e a NM-dimension 0-1 matrix with a 1 only if a 

path is relevant to an OD movement). Overall, then, we can write RSUE() as the two 

conditions: 

 ( ) ( ( ( ), ( ))) δ x x Γd P c x δ x 0   (17)

 ( ( )) ( ( ) ( ( ), ( )))  1 δ x c x Φ c x δ x 0    (18) 
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In this formulation, we have a combination of a complementarity kind of condition (as in 

DUE) and a fixed point condition (as in SUE). We can see special cases as follows: 

 If (x) = 1 then the second constraint is redundant, and the first reduces to the SUE 

condition on the universal path set ( ( ( ), )x = Γd P c x 1 ).  

 If (x) = 0  1 then the first condition above represents a pre-defined (non-equilibrated) 

restricted choice set. 

 If we terminate an SUE solution algorithm (on the universal choice set) after a finite 

number of steps, at some point xest , then in most practical cases not all routes will be used, 

which means (xest)  1, i.e. not an actual SUE solution is found. In this case, similarly to 

the case of a pre-defined choice set, we only satisfy (approximately) the first condition, 

there is no analogous condition to the second for those routes not used. 

It should be noted that this is a fixed point problem in x, but a rather difficult one to solve 

given that (x) maps onto integers (x is real, but the functions are non-smooth, unlike 

traditional SUE). 

5.3 COMPUTATIONAL CONSIDERATIONS 

A key question is to what extent the proposed models could be applied in large-scale networks. 

In the case of SUEGE with a continuous, bounded error distribution, an obvious general 

candidate is the Method of Successive Averages (MSA) algorithm (Sheffi and Powell, 1982). 

However, there appears to be no existing proof of convergence of such an algorithm that covers 

the case of bounded error distributions, and so the approach would be heuristic. An alternative 

possibility arises by noting that the set of used routes in a continuous, bounded SUE problem is 

affected only by the bounds, and these bounds will change only in response to the flows 

through the travel cost functions; thus, for fixed flows, the set of used routes is fixed. 

Therefore, it would seem possible to devise an algorithm in which, at each iteration, updates 

the choice set by dropping or appending new options based on a column generation method (if 

needed based on the latest bounds), and then a path-based SUE problem is solved on the fixed 



 

 

181 

choice set. However, this latter element would require some developments to avoid Monte 

Carlo methods, entailing large computational cost, in the case of general bounded distributions.  

 In the case of SUEGE models with a discrete error distribution, an MSA would again be 

a potential candidate algorithm. However, given the combinatorial nature of the discrete 

problem, it would seem more sensible to explore the possibility to employ deterministic 

algorithms to exploit such a structure, such as those specifically developed for solving shortest 

path algorithms with discrete distributions (e.g., Mirchandani, 1976; Fajardo and Waller, 2012) 

or problems associated with connectivity reliability (e.g., Bell and Iida, 1997).  

 In the case of RSUE models, the reformulation (17)/(18) shows that the problem contains 

elements of not only SUE but also DUE (complementarity), and for this reason it would seem 

sensible to consider the possible transfer to the RSUE case of developments in path-based 

DUE algorithms (e.g., Larsson and Patriksson, 1992; Chen et al., 2002; Carey and Ge, 2012). 

On the other hand, the structure of the RSUE problem seems to lend itself well too to methods 

that align with its two separate conditions, which define (a) the dispersion among used paths 

and (b) the question of which paths are used. In this respect, we would note algorithms for 

solving path-based SUE problems (e.g., Xu et al., 2012), and especially those that decompose 

path generation and path loading (e.g., Damberg et al., 1996; Bell et al., 1997). This is an 

element where the RSUE model is particularly attractive (relative to SUEGE with bounded 

distributions), in that any sub-problems of allocating flow on restricted choice sets with 

continuous unbounded stochastic error distributions are problems with which the traffic 

assignment field has considerable familiarity. 
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6 CONCLUSIONS 

The commonly used models within traffic assignment, namely DUE and SUE, have some 

known limitations by either allowing only routes with the minimum cost to be used (DUE) or 

requiring all routes to be used regardless of their costs (SUE). The paper shows how we might 

overcome these limitations by consistently integrating the problem of distinguishing used and 

unused paths within the concept of SUE. This has led to the proposal of two distinct, 

alternative methodological approaches of potential interest to the transportation research 

community. The two approaches define not only an equilibrated flow solution but also an 

equilibrated choice set in which the equilibrium conditions (and not the solution algorithm 

adopted) specify that some available routes could be unused at perfect equilibrium. The 

potential benefits of such approaches are greatest, it would seem, in large-scale regional and 

trans-national studies, meaning that we no longer have the choice only between DUE (which 

will tend to assign all-or-nothing to congested parts of such networks) and SUE (which can be 

computationally demanding and rather implausible, in attempting to assign some traffic to all 

routes).  

 The present study justifies, defines and illustrates both approaches as well as discusses 

their similarities, differences, capabilities and potentials. Also, we have outlined possible 

approaches for calibration and application of both methods. The RSUE seems more 

straightforward to apply in short term, as extensions of existing, calibrated SUE models, 

especially if supplemented with some information on routes actually chosen to aid in the 

determination of the Φ operator. In a companion paper (Rasmussen et al., 2014), we develop 

solution methods for generating RSUE solutions for large-scale networks, and explore the 

characteristics of the solutions produced. Beyond these two papers, what is required next, we 

believe, is a further development and study of the capabilities and potential of RSUE and 

SUEGE. One issue to consider lies within the possible non-uniqueness of solutions. We have 

outlined and discussed different possibilities for tackling this challenge in real-life applications, 

and believe that especially the increased availability of observed route choices can be utilised 

in doing so. Additional future extentions could be to multi-criteria traffic assignment (Dial, 

1997; Nagurney, 2000; Nagurney and Dong 2002; Wang and Ehrgott, 2013), and the fact that 

RSUE and SUEGE has a path-based formulation that fits well with non-additive problems such 
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as reliability (e.g. Chen and Zhou, 2010; Chen et al., 2011), non-linear transformations of path 

travel cost (e.g. Gabriel and Bernstein, 1997), and problems requiring to know turning flows 

for asymmetric junction interactions (Watling, 1996; Nielsen et al., 1998). 

 Our research began with a re-thinking and formulation of ‘user conditions’ analogous to 

Wardrop’s, and we found this especially helpful in the development of our model. Indeed, in 

doing so we found that the oft-quoted informal description of the behaviour underlying SUE as 

‘minimising perceived cost’ was not especially helpful, yet a more formal articulation did not 

apparently exist (analogous to Wardrop’s very clear conditions). We believe such an approach, 

beginning with a development of the user conditions, is especially suitable for the traffic 

assignment community to exploit the insights from empirical work and behavioural studies. 

This is especially relevant as nowadays we have the potential to track routes through GPS or 

mobile phone devices, and as a result there is a rapidly growing body of evidence. While many 

phenomena may be location-specific, it is also interesting to look across such data sets for 

transferable phenomena which may be included as (potentially adjustable) rules within a new 

set of user conditions. The original developers of the route choice conditions underlying DUE 

or SUE could not have envisaged the wealth of explicit route-based data to which we now have 

access, and so it seems timely to reconsider these conditions in the light of such a new 

evidence-base. 
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Abstract: We propose a new class of solution algorithms to solve the Restricted Stochastic 

User Equilibrium (RSUE) that was introduced in the companion paper. The class is path-based 

and allows a flexible specification of how the choice sets are ‘systematically’ grown by 

considering congestion effects and how the flows are allocated among routes. The specification 

allows adapting traditional path-based stochastic user equilibrium flow allocation methods 

(designed for pre-specified choice sets) to the generic solution algorithm. We also propose a 

cost transformation function and show that by using this we can, for certain Logit-type choice 

models, modify existing path-based Deterministic User Equilibrium solution methods to fit the 

RSUE solution algorithm. The transformation function also leads to a two-part relative gap 

measure for consistently monitoring convergence to a RSUE solution. Numerical tests are 

reported on two real-life cases, in which we explore convergence patterns and choice set 

composition and size for alternative specifications of the RSUE solution algorithm.  

Keywords: Restricted Stochastic User Equilibrium; Solution Methods; Path-swapping; 

Convergence criteria; Gap function; Stochastic User Equilibrium. 
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1 INTRODUCTION 

Within the Stochastic User Equilibrium traffic assignment model (SUE, Daganzo and Sheffi, 

1977), the most commonly applied choice models are based on the assumption that the error 

terms are distributed according to some continuous distribution with unbounded support (e.g., 

probit and logit-type models). Such an assumption however induces, in the equilibrium state, 

that flow is assigned to all routes no matter how expensive they might be. This is practically 

infeasible for large-scale problems, and the problem ‘scales’ as the network grows. In practical 

applications, the algorithms does not generate and assign traffic to all routes, but rather finds an 

estimated SUE on a sub-set of routes. As mentioned, the SUE does not provide any help in the 

sub-set selection, and the route selection is thus left for the algorithm. 

 This issue led us to propose two models which consistently integrate the problem of 

distinguishing used and unused paths within the SUE framework allowing the use of Random 

Utility Models (RUMs) among used paths (Watling et al., 2014). On the one hand, the 

Stochastic User Equilibrium with General Error distribution (SUEGE) model facilitates the use 

of a range of probability distributions and, assuming a (discrete or continuous) bounded 

distribution, at equilibrium allows used and unused routes. The most commonly used RUM 

however apply continuous distributions with unbounded support, and in such cases the SUEGE 

collapses to the ordinary SUE (Watling et al., 2014). On the other hand, the Restricted 

Stochastic User Equilibrium (RSUE) model does not pose restrictions on the distribution 

applied, but equilibrates the choice set composition via additional constraints on the cost on 

unused routes. This facilitates the use of a range of RUMs for the distribution of flow among 

the routes in the choice set, while still allowing equilibrated choice sets not being the full 

universal choice set. The RSUE is formulated by two conditions, one concerned with the 

distribution of flow and one posing a cost restriction on the unused routes, thus making it 

reasonable to devise a solution algorithm which decomposes path generation and path loading. 

This decomposition and the connection to existing RUMs causes the RSUE to be more straight 

forward to apply in the short term than the SUEGE with bounded distributions. The path 

loading constitutes a sub-problem of loading traffic among a restricted set of routes according 

to a RUM, and this is a problem well-known in practical SUE applications. It would thus seem 
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evident to propose RSUE as extensions of existing and calibrated SUE models, especially 

when data on actually chosen routes are available to validate the operator used in the condition 

posing a cost restriction on the unused routes (see Watling et al., 2014). 

 Solution algorithms have yet to be proposed for the RSUE model on a non-predefined 

choice set in large-scale applications. In this paper, we tackle this challenge by proposing a 

generic solution algorithm to the RSUE model. The solution algorithm is very flexible with 

regards to the strategy adopted to the path generation as well as flow distribution. Paths are 

generated based on column-generation, which ‘systematically’ grows the choice sets without 

the need for simulation. Flows are distributed based on the adaptation of existing path-based 

SUE solution algorithms. Alternatively, we propose a class of cost transformation functions 

allowing to fit path-based Deterministic User Equilibrium (DUE, Wardrop, 1952) solution 

algorithms into the generic solution algorithm to find RSUE solutions. We focus on logit-type 

choice models for which closed-form expressions are available for the choice probabilities, 

thereby obviating the need for computationally expensive simulation. These choice models 

include a large part of the models most commonly adopted in practical implementations and/or 

considered to be state-of-the-art (e.g., Path Size Logit, Ben-Akiva and Bierlaire, 1999). 

Moreover, in this paper we tackle the issue of measuring convergence of RSUE solution 

algorithms by proposing a two-part convergence measure, which consistently measures the 

convergence to equilibrated choice sets as well as the convergence of the distribution of flow 

among the used paths to fulfil the underlying choice model. 

 The remainder of the paper is structured as follows. Section 2 presents the notation and 

the definition of the RSUE model in its two variants. Section 3 introduces the class of cost 

transformation functions and shows how it allows transforming closed-form Logit-type RSUE 

problems into equivalent corresponding DUE-like problems. Section 4 proposes the new 

measure for monitoring convergence to an RSUE solution. Section 5 presents the generic 

solution algorithm and gives an example of how methods developed for DUE assignment can 

be adopted. Section 6 shows numerical results for two real-life networks. Section 7 discusses 

the implications of the findings, and finally section 8 draws the main conclusions from the 

study. 
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2 NOTATION AND DEFINITIONS 

We introduce the notation and definitions with the objective of summarising the Restricted 

Stochastic User Conditions and the RSUE model formulation presented in the companion 

paper (Watling et al., 2014) as well as presenting the frameworks at the foundation of the 

equivalent DUE-like formulation and the solution method.  

2.1 NOTATION 

Consider a network as a directed graph composed of links a (a = 1, …, A) with non-negative 

flow fa, and let f be the A-dimensional vector of link flows. We assume the actual flow-

dependent (generalised) travel cost on link a to be a continuous function of the flow, and 

denote it by ta(f).  

 The network consists of M OD-pairs, and the demand dm for each OD-pair m composes a 

non-negative M-dimensional vector d. For each OD-pair m, Rm is the set of all simple acyclic 

paths (routes) connecting origin and destination, and Nm is the number of paths in Rm. R refers 

to the joint set of all simple paths across OD-pairs, with dimension .  

 We denote the flow on path r between OD-pair m as xmr and the N-dimensional flow-

vector on the universal choice set across all M OD-pairs as x. The convex set G of demand-

feasible non-negative path flow solutions G is given by: 
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 Let ( )mrc x  be the actual (generalised) cost on path r for OD-pair m. As links may be 

used by several paths within and across the OD-pairs, ( )mrc x depends on the flow vector x . 

Additionally, the cost  mrc x is a positive value and may be a weighted sum of several 

attributes, such as e.g. travel time, travel distance, and congestion charge.  

 In vector/matrix notation, let x and f be column vectors, and define  as the AN-

dimensional link-path incidence matrix. Then the relationship between link and path flows may 

be written as f = Δx . We suppose that the travel cost on path r for OD-pair m is additive in the 

link travel costs of the utilised links: 

 
1

( ) ( )
A

mr amr a
a

c t


  x x                   (r  Rm; m = 1,2,…,M; Gx )  (3) 

 Let  c x be the vector of costs on all paths, ( )mrc x  be a transformed cost of path r for 

OD-pair m, and hence  c x be the vector of transformed costs on all paths. The RSUE model 

distinguishes between used and unused paths, and consequently we let mR  be the subset of mR  

consisting of all utilised paths (non-zero flow) for OD-pair m (i.e. m mR R ).  

 The following notation is also used in the paper:  

- la is the length of link a. 

- Lmr is the length of path r for OD-pair m. 

- mr  is the set of links constituting path r for OD-pair m. 

-  { ( ) }mr mc : r R x   is the mapping function used in the RSUE definition, specifies 

criterion to be fulfilled by unused paths. 

- m  is a free variable used in the DUE formulation, which equals the cost on the 

cheapest path between OD-pair m. 

- z is the number of zones. 

- V is the number of vertices in the network. 

- ( ( ) )mr mP Rc x   is the proportion of flow on OD-movement m that uses path r among 

the alternatives in the restricted set of utilised paths mR  for OD-pair m. 
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2.2 RESTRICTED STOCHASTIC USER EQUILIBRIUM 

The choice probability function ( ( ) )mr mP Rc x   is supposed given by a RUM separately for each 

OD-pair m: 

  ( ( ) ) Pr ( ) ( ) , ,mr m mr mr ms ms m mP R c c s r s R r R               c x x x    (4) 

where θ≥0. The choice model hereby holds for any proper subset of the universal choice set. 

The flow on any used path is then the total demand multiplied by the choice proportion (4), 

whereas the flow on any unused path is zero by definition. The equilibrium path flows must 

then satisfy: 

 
( ( ) ) if 

       ( ;  )
0 otherwise

m mr m m
mr m

d P R r R
x r R m M

  
  


c x  
    (5) 

where 

  :  and 0           ( )m m mrR r r R x m M       (6) 

 The conditions (5) and (6) are necessary but not sufficient, as the restricted choice set is 

‘internally defined’ and not necessarily the universal choice set. It should be noted that the 

RUM is supposed to be such that for any non-empty restricted choice set m mR R  and for any 

cost vector c, the probability function has the properties: 

 ( ( ) ) 1
m

mr mr R
P R


 c x

      (7) 

and 

 ( ( ) ) 0mr m mP R r R  c x        (8) 

These properties imply that the OD demands are automatically satisfied (from (7)) and the path 

flows are non-negative (from (8)). Since we consider only RUMs in which these properties 

hold, then we shall not explicitly state them below as necessary conditions. 
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 We introduce the mapping    that, for each OD-pair m, acts upon the costs of used 

paths, i.e. on { ( ) }mr mc : r Rx  . We require that any unused path on OD-pair m has a cost 

greater than or equal to  { ( ) }mr mc : r R x  , i.e. for any unused path the following has to hold: 

  0      ( ) { ( ) }        ( ;   1,..., )mr mr ms m mx c c : s R r R m M      x x     (9) 

 Bringing together these elements, the equilibrium conditions are defined as (for details, 

see Watling et al., 2014): 

Definition: Restricted Stochastic User Equilibrium (RSUE( ))  

Suppose that we are given a collection of continuous, unbounded random variables  

{ : , 1,2,...,mr mr R m M    } defined over the whole choice set mR ; and that for any non-empty 

subsets mR of mR  (m = 1,2,…,M), probability relations ( ( ) )mr mP Rc x   are given over mR  (m = 

1,2,…,M) by considering the relevant marginal joint distributions from  

{ : , 1,2,...,mr mr R m M   }. The route flow x  G is a RSUE( ) if and only if for all r  Rm 

and m = 1,2,…,M: 

 0               ( )mr m mr m mr mx r R x d P R      c(x)    (10) 

  0               ( ) { ( ) }mr m mr ms mx r R c c : s R      x x     (11) 

 Note that the set of utilised paths mR  is implicitly defined by the restrictions. In the 

companion paper (Watling et al., 2014) we introduced the RSUE(min) and RSUE(max) by 

letting  { ( ) : }ms mc s R x   be min{ ( ) : }ms mc s Rx  and max{ ( ) : }ms mc s Rx  , respectively. 

Watling et al. (2014) also provided an alternative formulation of the RSUE(Φ), namely a 

formal mathematical formulation which is a combination of a complementarity kind of 

condition and a fixed point condition. 

2.3 EXTENSION TO MULTIPLE USER CLASSES AND VEHICLE TYPES 

The notation may be readily modified to include the more general case of (i) multiple user 

classes differing in their definition of travel cost and in the OD matrix, and (ii) multiple vehicle 

types differing in the contribution they make to the total traffic flow. In this case, m denotes a 
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commodity which is a combination of OD movement, user class and vehicle type, so that M is 

the product of the number of OD movements, user classes and vehicle types. In order to reflect 

different contributions to traffic flow, we suppose that the demand dm for commodity m is 

measured in equivalent passenger car units. The only modification required to the notation is 

then that tam(Δx) now denotes the travel cost on link a as perceived by commodity m when the 

total pcu route flows are x. Thus, the route cost-flow functions are defined by: 

 
1

( ) ( )
A

mr amr am
a

c t


 x Δx               (r  Rm; m = 1,2,…,M)  .  (12) 

 Under these changes, all the subsequent models and methods presented may be applied to 

this more general case. In the following we will refer to OD-pair m, but this may as well, in the 

case of multiple vehicle and/or user classes, refer to commodity m. In section 6.2 we perform 

tests using 19 user classes and 2 vehicle-types. 
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3 EQUIVALENT USER EQUILIBRIUM TRANSFORMATION 

We introduce a function transforming the actual path costs into transformed costs in order to 

reformulate the RSUE problem as an equivalent problem for certain Logit-type choice models. 

This reformulated problem has a formulation which is very similar to a traditional DUE 

problem by containing one condition equalising costs on utilised paths and one condition 

specifying the criteria to be fulfilled by unused paths. The similarity allows modifying and 

using efficient path-based DUE solution algorithms to solve for solutions satisfying the RSUE 

conditions.  

3.1 MNL RSUE  

The MNL RSUE(Φ) can be transformed into an equivalent problem which is very similar to 

the traditional DUE formulation. The DUE is defined for all OD-pairs m (Patriksson, 1994): 

 0 ( )mr mr m mx c r R    x     (13) 

 0 ( )mr mr m mx c r R    x     (14) 

 The definition of the DUE implicitly distinguishes between used and unused paths, and 

implies that the costs on all utilised paths are the same, namely equal to the cost of the lowest-

cost alternative for OD-pair m. The DUE conditions can thus be rewritten as: 

0 ( ) ( )mr m mr ms mx r R c c s R      x x      (15) 

  0 ( ) min ( ) max ( )
m m

mr m mr m ms mss R s R
x r R c c c        x x x 

   (16) 

 For the transformation of the MNL RSUE(Φ) into an equivalent set of conditions similar 

to conditions (15) and (16), we now introduce the transformed cost  mrc x  of path r as a 

function of the actual generalised cost on path r, the flow on path r and a parameter θ≥01:  

  ( ) exp ( )mr mr mrc x c  x x     (17) 

                                                 
1 A similar transformation was used to equilibrate routes in the gradient projection algorithm using a reference 
path cost proposed in Bekhor and Toledo (2005)  
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 We note that there is no physical meaning of the transformed route cost ( )mrc x  as a 

purely mathematical construct to be used in the equilibration. However, equalising the 

transformed cost among the used paths (e.g. through a DUE algorithm equalising the 

transformed costs rather than the actual costs) induces the first MNL RSUE condition (10) to 

be fulfilled: 

  ( ) ( ) ,mr ms mc c r s R  x x       (18) 

Equation (17) can be rewritten to express the flow on path r: 

 
 

( )

exp ( )
mr

mr
mr

c
x

c



x

x


    (19) 

Furthermore, the sum of flows on all paths for OD-pair m is equal to the total demand, and 

considering that ( ( ) )mr mP Rc x   is equal to the flow on path r divided by the demand dm for OD-

pair m ( ( ( ) )mr m mr mP R x dc x  ) yields the following: 
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   (20) 

This corresponds to the choice probability formulation of the MNL model with scale parameter 

θ, and shows that the solution to the problem (18) on the set of utilised paths is equal to the 

solution to the corresponding MNL SUE problem on the original costs  c x . The opposite 

implication can also be shown: starting from the MNL choice probabilities and using the 

definition of the transformation function, (20) can be utilised to show that the system (18) 

arises from using the transformed costs ( )c x .  
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 Using the second RSUE condition as in definition (11), the equivalence shown above 

yields the following transformed RSUE conditions, which are equivalent to the original RSUE 

conditions if for all  mr R  and : 

 0                ( ) ( )mr m mr ms mx r R c c s R      x x      (21) 

  0               ( ) { ( ) : }mr m mr ms mx r R c c s R      x x     (22) 

 These transformed RSUE conditions have some similarities with the DUE conditions 

(15) and (16): both contain a statement for used paths and a statement concerning non-used 

paths. Comparing equations (15) and (21), it can be seen that they both equalise costs on 

utilised paths. However, one operates on actual costs, while the other operates on the 

transformed costs when distributing traffic between utilised paths. The second condition is also 

quite similar, especially for the RSUE(max) and RSUE(min). The difference, however, is that 

while the criteria value to be fulfilled by the unused paths is defined implicitly by the DUE 

formulation, the RSUE needs an explicit definition of how the reference OD travel cost is 

related to the path travel costs of used paths. Consequently, though not equivalent, the 

similarity between the transformed RSUE problem and the DUE has led us to propose a 

generic RSUE(Φ) solution algorithm which facilitates the use of path-based DUE algorithms 

using the transformed costs. 

3.2 EXTENSION TO CLOSED-FORM LOGIT-TYPE RSUE MODELS 

The above transformation of the RSUE(Φ) was based on the MNL model, and hence it does 

not account for correlations across alternatives. This disadvantage is critical in a route choice 

application, as paths typically overlap with other considered paths on segments. However a 

similar transformation of the RSUE(Φ) problem into an equivalent DUE-like problem can also 

be applied (and solved via efficient modified DUE solution algorithms) for certain other choice 

models by altering the deterministic term of the utility function. This is done through a cost 

transformation function similar to the one proposed for the MNL, however allowing  mrc x  to 

be composed, in addition to traditional elements such as travel time and direct travel cost, by 

(deterministic) elements taking correlations into account. 

m M
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 Many MNL modifications accounting for correlations have been proposed, for example 

the C-Logit (Cascetta et al., 1996) and the Path Size Logit (PSL) model (Ben-Akiva and 

Bierlaire, 1999). The PSL model has been applied with success in various route choice studies 

(e.g., Bekhor and Prato, 2009; Frejinger et al., 2009; Ramming, 2001; Ben-Akiva et al., 2012), 

and in the following it is shown that by applying the transformed cost-function (23) we can 

write the PSL RSUE as a DUE-like system similar to equations (21) and (22). A similar 

approach can be applied to show equivalence for other closed-form Logit-type models where 

the modification from the MNL model consists of altering the deterministic term of the utility 

function (by replacing the expression  ( ) lnmr PS mrc PS x  in (23) with the corresponding 

expression for the selected choice model).  

 Consider the following cost transformation: 

    ( ) exp ( ) lnmr mr mr PS mrc x c PS     x x    (23) 

where θ≥0, βPS≤0 and ( )mrc x  is the general MNL cost-function applied in section 3.1. Let PSmr 

be defined as in Ben-Akiva and Bierlaire (1999): 

 
1

mr

m

a
mr a

mr amkk R

l
PS

L 


   

    (24) 

where Lmr and la are measures of impedance, and can either be measured as distance or cost 

(la=ta(f) and Lmr=cmr(x) . Using cost makes PSmr dependent not only on the composition of the 

choice set, but also on the flow on the paths in the choice set. Choosing cost as measure of 

impedance thus implies that the PSmr-factors have to be updated in every iteration of a solution 

algorithm, even if no additional paths are added to the choice set. It should be also noted that 

the allocation of flow at equilibrium may also vary between using cost or length as measure of 

impedance (Zhou et al., 2012). In the following, it is assumed that the impedance is equal to 

the flow-dependent cost, but the derivation is the same if using distance.  
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Expression (23) can be rewritten to express the flow on path r: 

 
   

( )

exp ( ) ln
mr
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c
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x

x


   (25) 

The condition on the transformed costs (18) should hold in equilibrium (as in the MNL case), 

and combining (18) and (25) with the choice probability for OD-pair m yields the following:  
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(26) 

This corresponds to the PSL choice probabilities with scale parameter θ and path size 

parameter βPS. The term ln(PSmr) ranges from –∞ to 0, where 0 arises when path r is unique 

and the value then decreases with increasing overlap with other paths in the choice set. As 

βPS<0 the cost (disutility) of path r thus increases with decreasing uniqueness of path r.  

 The equivalence shown above yields equivalence between the PSL RSUE on the PSL 

costs  ( ) lnmr PS mrc PS x  ((10) and (11)) and the DUE-like system (21) and (22) when 

letting ( )mrc x  be defined by (23). 
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4 MEASURING CONVERGENCE TO A RSUE SOLUTION 

Traditionally, it has been a challenge to measure convergence for SUE models, and in practice 

most applications of SUE use measures of stability, such as change in link flows between 

iterations (e.g., Liu et al., 2009; Zhou et al., 2012), rather than directly measuring proximity to 

equilibrium. We utilise the introduced transformation functions (17) and (23), as well as the 

derived knowledge that these transformed costs are equal on used paths at equilibrium, in order 

to propose a novel two-part consistent convergence measure for the proximity to a RSUE(min) 

or RSUE(max) solution. Since we utilise the transformation functions introduced, the 

underlying choice model needs to be the MNL or PSL model. The first part of the measure 

concerns the convergence to fulfil the SUE conditions among utilised paths (RSUE condition 

(10)), whereas the second part measures to what degree the criteria on unutilised paths are 

fulfilled (RSUE condition (11)). The first part is thus ‘conditional’ on the choice set, and the 

second part measures the ‘convergence’ of the composition of the choice sets. It is important to 

ensure convergence of both measures – obtaining convergence among the used routes does not 

imply overall convergence if there are additional attractive routes not in the choice set.  

 The first part is based on the relative gap measure of the DUE (Rose et al., 1988) and 

approaches zero as the flow on utilised paths approach the SUE flow solution. For iteration n, 

the measure can be computed as: 
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   (27) 

where ,min ( )m nc x  is the minimum of the transformed cost on paths utilised between OD-pair m 

for iteration n, and ( )mr nc x  and ( )mr nc x  depend on the selected choice model. 
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As the transformed costs will become equal in the RSUE solution, the proposed relative gap 

measure will approach zero as the algorithm converges and will become zero at full 

convergence.  

 The second part of the convergence measure captures that there may exist unused paths 

which violate the second RSUE condition. The measure computes how close the costs on the 

cheapest unused path are to fulfilling the criteria describing unused paths in the RSUE 

definition. This corresponds to investigating for the RSUE(min) whether any unused path is 

cheaper than the cheapest used path, whereas for the RSUE(max) whether there exists any 

unused path which is cheaper than the most expensive used path. The measure becomes zero at 

convergence and it is based on actual costs rather than transformed costs. For the RSUE(min) it 

is defined as: 
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For the RSUE(max) model it is expressed as: 
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where k refers to the amount of used paths for the corresponding OD-pair m in iteration n and 

cmr,k (xn) is the cost on the current k-th shortest path on the network between OD-pair m. 

 The computation of the second part of the convergence measure requires for the 

RSUE(min) the result of a shortest path search based on updated travel costs, and for the 

RSUE(max) the results of a k-th shortest path search based on updated costs. These searches 

are quite computationally demanding, but the computation of the convergence measure does 

not induce significant extra calculation time, as these searches are part of the next iteration of 

the solution algorithm anyhow (see section 5.2). 
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 The first part of the convergence measure is zero if the choice set consists of only one 

route for a given OD-pair. This is the case at the end of the first iteration of many traditional 

SUE solution algorithms based on column generation (e.g., Sheffi and Powell, 1982). The 

algorithm has (probably) not converged at the end of iteration 1 though, as the distribution of 

flow to this one route will cause other routes to be attractive. This will be caught by a non-zero 

value of the second part of the measure, which highlights the need to evaluate both parts of the 

gap measure. It should be noted that the proposed measures of convergence are not only valid 

for the solution methods proposed in the present study, but they can also be applied to all other 

solution methods solving for a closed-form Logit-type RSUE(min) or RSUE(max).  

5 RSUE SOLUTION METHODS 

We motivate and propose a generic path-based solution algorithm for solving RSUE(Φ) 

problems. Subsequently we discuss possible approaches to adopt in two important components 

of the generic algorithm as well as the convergence and computational attractiveness of 

different variants of the algorithm.  

5.1 SOLVING IN THE SPACE OF LINK- OR PATH FLOWS 

Traditional SUE and DUE solution methods are formulated and solved in the space of either 

the path flows or the link flows. Link-based formulations are attractive by not having to 

enumerate the paths, as path enumeration is computationally demanding and requires large 

computer memory. Path-based formulations allow for a flexible formulation of the set of 

alternatives considered (especially for the SUE which is often solved among a fixed pre-

defined choice set in practical implementations). Behaviourally unrealistic paths such as paths 

repeatedly going on and off highways can thereby be omitted. For the RSUE, a solution 

method based on a path-based formulation is pursued as the obvious approach. This is 

motivated by investigating various properties for DUE, SUE as well as solutions satisfying the 

RSUE conditions. 

 Various link- as well as path-based algorithms have been formulated to solve for 

solutions satisfying the DUE conditions (e.g., LeBlanc et al., 1975; Jayakrishnan et al., 1994; 

Han, 2007; Dafermos and Sparrow, 1969; Larsson and Patriksson, 1992; Kupiszewska and van 
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Vliet, 1998). However, it is important to note that DUE flow solutions are unique in link flows, 

but not path flows; there is not a one-to-one mapping between link- and path-flows in DUE 

problems. This is especially important to bear in mind when applying a path-based solution 

algorithm, as the found flow solution provides uniqueness in link flows but not path flows. 

 Unlike DUE, SUE flow solutions provide uniqueness in path and link flows. This is true 

if the choice function and the cost-flow function are continuous and if (i) the link flow feasible 

set F is non-empty (i.e., at least one path exists between OD-pairs m for which dm>0), compact 

and convex, and (ii) the link flows resulting from the flow network loading map (expressing 

link flows in terms of link costs) are always feasible (Cantarella, 1997). Consequently, a one-

to-one mapping exists between path and link flows for SUE solutions, and both link- and path-

based solution methods have been proposed for the SUE (e.g., Sheffi and Powell, 1982; 

Damberg et al., 1996; Bekhor and Toledo, 2005; Zhou et al., 2012; Akamatsu, 1996; Bell et al., 

1997; Leurent, 1997; Maher and Hughes, 1997). 

 The RSUE conditions, unlike the DUE and SUE, do not provide uniqueness in link flows 

(nor in path flows), as the set of used paths is not uniquely defined by the RSUE conditions 

(see Watling et al., 2014). Consequently, a found link-flow solution cannot be mapped to a 

path-flow solution via a one-to-one relation, and additionally, this link-flow solution may not 

be unique. Furthermore, the definition of the RSUE conditions clearly distinguished between 

used and unused paths, and specifies a criterion to be fulfilled among used paths. As a 

consequence, the definition of the conditions does not specify unique link flows and 

necessitates the consideration of paths, which has led us to pursue the proposal of a path-based 

solution algorithm. 
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5.2 RSUE(Φ) SOLUTION ALGORITHM 

We propose an iterative approach to solve for RSUE(Φ) solutions. One iteration of the 

proposed generic solution algorithm consists of four steps, namely the Column generation 

phase, the Restricted master problem phase, the Network loading phase and the Convergence 

evaluation phase. 

Algorithm  

Step 0 Initialisation. Iteration n=1. Perform deterministic all-or-nothing assignment for all 

m M OD-pairs and obtain the flow vector for all utilised paths nX . 

Perform network loading, compute link travel costs  a nt f  on all network links 

a A , and compute generalised path travel costs ( )mr nc X . Set n=2. 

Step 1 

 

Column generation phase. Let km,n-1 denote the current number of unique paths in 

the choice set of used paths for OD-pair m=1, 2,..., M in iteration n-1. 

For RSUE(min):  

For each origin, 

perform a shortest path 

search to all 

destinations based on 

actual link travel costs

1( )a nt f . If for any OD-

pair m=1, 2,..., M a new 

unique path i is 

generated, add it to the 

choice set ,m nR  with 

flow , 1mi nx  =0. 

For RSUE(Φ): 

For each OD-pair mϵM, 

based on actual link travel 

costs 1( )a nt f , check for a 

new route to add to the 

choice set ,m nR  by applying 

some path generation 

method which supports the 

fulfilment of the Φ operator. 

If for any OD- pair m=1, 

2,..., M a new unique path i 

is generated, add it to the 

choice set ,m nR with flow 

, 1mi nx  =0; if several routes 

possible, add only the 

shortest one. 

For RSUE(max):  

Perform km, n-1-shortest 

path search for each OD-

pair m=1, 2,..., M based 

on actual link travel costs 

1( )a nt f .  

If for any OD-pair m=1, 

2,..., M a new unique path 

i is generated among the 

k generated paths, add it 

to the choice set ,m nR  

with flow , 1mi nx  =0; if 

several new unique paths 

are generated, add only 

the shortest one. 
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Step 2 Restricted master problem phase. Given the choice sets ,m nR  for all m=1, 2,..., M, 

apply the selected inner assignment component and averaging scheme to find the 

new flow solution Xn. 

Step 3 Network loading phase. Perform the network loading to obtain fn from Xn, 

compute the link travel costs ( )a nt f , the generalised path travel costs ( )nC X  and 

(if relevant/included) the Path Size factors. 

Step 4 Convergence evaluation phase. If the gap measure consisting of the sum of 

Used
nRel. Gap  and Unused

nRel.Gap  is below a pre-specified threshold  , Stop. Else, 

set n=n+1 and return to Step 1 
 

 It should be noted that the path flow vector is denoted by X rather than x. This is to 

emphasise that in practical implementations it is not possible/practical to operate with the 

vector x, as this requires enumerating the universal choice set for all OD-pairs to obtain its 

dimension. Rather, the dimension of the flow vector is not pre-specified in practical 

implementations, but is allowed to increase as the algorithm progresses. The same occurs for 

the path cost vector c(x), which we have denoted C(X) to highlight that this might grow as the 

algorithm progresses. The elements xmr and cmr thus refer to the vectors X and C, respectively. 

5.3 COLUMN GENERATION PHASE 

The choice set is ‘systematically’ grown (as in the DUE case) based on built-in rules for the 

generation of new alternatives. The search for new alternatives may be performed in various 

ways, but in the solution algorithm we have proposed a single shortest path search for the 

RSUE(min) and a k-shortest path search for the RSUE(max). Basing the search for new paths 

to introduce to the choice set on the actual costs, induces the condition (11) on unused paths to 

be fulfilled.  

 For other formulations of the operator Φ, alternative path generation techniques may be 

applied, such as variations of shortest path algorithms (e.g., Akgün et al., 2000; Hunt and 

Kornhauser, 1997; Lombard and Church, 1993; Van der Zijpp and Fiorenzo-Catalano, 2005), 

application of heuristic rules (e.g., Ben-Akiva et al., 1984; Azevedo et al., 1993; De la Barra et 

al., 1993), branch and bound algorithms (Hoogendoorn-Lanser et al., 2006; Prato and Bekhor, 
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2006), biased random walk algorithm (Frejinger et al., 2009), and breadth first search with 

network reduction (Rieser-Schüssler et al., 2013). Some of these alternative approaches may 

also be attractive to apply for the RSUE(min) and RSUE(max). It is however essential that the 

column generation approach adopted should ensure that the condition (10) on unused paths are 

fulfilled upon termination of the algorithm.  

 It should be noted that the proposed approach for the Column generation phase for the 

RSUE(min) and RSUE(max) induces the RSUE condition (11) to be fulfilled; For the 

RSUE(min) there is no non-included path which is deterministically shorter than the once 

already included in the choice set when the algorithm above terminates. The condition (11) is 

fulfilled for the RSUE(max) model, since there is no non-included path that is deterministically 

shorter than the longest path already included in the choice set when the algorithm terminates. 

5.4 THE RESTRICTED MASTER PROBLEM PHASE 

The allocation of flow between the alternatives in the choice sets (the Restricted master 

problem phase) can be performed by deploying either DUE allocation methods using the 

transformed costs or SUE allocation methods. 

 Numerous path-based DUE solution algorithms which equilibrate path costs on used 

routes are available, such as the method of successive averages All-or-Nothing (MSA AoN, 

applied in e.g. Bekhor and Toledo (2005)), the Path Equilibrator (Dafermos and Sparrow, 

1969), the Disaggregate Simplicial Decomposition (DSD, Larsson and Patriksson, 1992), the 

Gradient Projection (GP, Jayakrishnan et al., 1994; Chen et al., 2002), the Social Pressure 

(Kupiszewska and van Vliet, 1998), the Projected Gradient (Florian et al., 2009) and the slope-

based multipath flow update (Kumar and Peeta, 2010) methods. Components of these DUE 

solution algorithms could be modified to fit into Step 2 by applying the transformed costs 

rather than the actual costs in the inner direction finding step. Thereby the transformed costs 

are equilibrated, which corresponds to the first RSUE condition (10) being fulfilled.  

 Another branch of path-based DUE solution algorithms are the algorithms based on path-

swapping, which usually swap traffic to/from paths based on cost differences. The swapping 

has a direct and a plausible behavioural interpretation, namely flow should be swapped to 
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cheap paths and away from costly paths. The algorithms proposed in the literature are 

differentiated by swapping between pairs of paths (Han, 2007; Carey and Ge, 2012), all paths 

(Mounce and Carey, 2011), or to only one path (Mounce and Carey, 2011; Nie, 2003). 

 Among the algorithms tested in Carey and Ge (2012), an algorithm that is swapping 

flows between pairs of paths was found providing stable and fast convergence. The algorithm 

swaps flow from the most expensive path to the cheapest path, the second-most expensive path 

to the second-cheapest path, etc., and performs one network loading per iteration while not 

requiring any simulation. We utilise the introduced cost transformation function to adapt this 

approach to fit the generic RSUE solution algorithm proposed above by letting Step 2 be 

comprised of the following. 

Step 2  

Step 2.1 For each path r in the choice set for OD-pair m for iteration n, compute the 

transformed cost 1( )mr nc X  according to equation (17) or (23) (dependent on 

selection of choice model). 

Step 2.2 Rank all paths for OD-pair m in ascending order of 1( )mr nc X :

 
1 21 1 1( ) ( ) ( )mp n mp n mp nc c c     X X X   .  

Pair the paths as    1 2, , , 1p p p p  , ...: for odd number of paths, the path 

 1 2p   will not be paired. 

Step 2.3 For each pair  ,i jp p , compute the swapping-factor: 
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For each pair  ,i jp p , perform the swap: 

  , , 1 , 1,
i i jmp n mp n n i j mp nx x p p x      

  , , 1 , 1,
j j jmp n mp n n i j mp nx x p p x      

For odd number of paths, set 

    , 1 2, , 1 2, 1m p n m p nx x    
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 As the path-swapping algorithm equalizes the transformed costs, we know from section 

3.2 that the RSUE condition (10) is also fulfilled upon termination. We note that the pairwise 

path-swapping algorithm by Carey and Ge (2012) is especially attractive for Logit-type choice 

models. This is due to a special characteristic of the Logit-type choice models, namely the 

Independence from Irrelevant Alternatives (IIA) property that induces the ratio of the choice 

probabilities between two paths to not depend on any other path. Basing the solution methods 

on pairwise path-swapping makes good sense in this framework by only considering the two 

paths between which flow is swapped in the swapping process.  

 Using the cost transformation in combination with a path-based DUE cost equilibration is 

however not the only option. Components of path-based SUE solution algorithms can also be 

adapted fit Step 2 of the proposed generic solution algorithm. Among these are modified 

versions of two of the most promising path-based DUE solution methods, namely the DSD and 

GP methods (for MNL choice models, see Damberg et al., 1996; Bekhor and Toledo, 2005); 

for Cross Nested Logit, see Zhou et al., 2012; Bekhor et al., 2008). While the latter three 

applications apply a pre-defined choice set (which in the adaptation to the RSUE solution 

algorithm would be defined by the routes generated by the Column generation phase), it is 

worth noting that the algorithm proposed by Damberg et al. (1996) allows augmenting the 

choice set. Damberg et al. (1996) noted that this augmentation can be done following many 

strategies, and suggested one strategy that generates a solution fulfilling the MNL RSUE(min) 

conditions (and fits actually as a version of the generic RSUE(min) solution algorithm 

proposed). Regarding the computational attractiveness of the SUE adaptations of the GP and 

DSD algorithms, Bekhor and Toledo (2005) found that they perform similarly when applied to 

a small grid network and the Sioux Falls network. Bell et al. (1997) also formulated a path-

based SUE solution algorithm which augment the choice set and actually produces a MNL 

RSUE(min) solution as well. 

 The averaging scheme of Step 2 involves weighing the current solution with the found 

auxiliary solution by using a step-size γn. To avoid potentially obtaining negative path flows, 

the step-size should be chosen such that 0≤γn ≤1. The step-size can be determined in various 

ways, for example pre-determined as well as various versions of the line search method 

proposed by Armijo (1966) (see Chen et al., 2012, 2013; Xu et al., 2012; Zhou et al., 2012). 
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Bekhor et al. (2007) compare the MSA, Armijo’s approximation method and the computation 

of the exact optimal step-size, and find that Armijo’s approximation performs best in terms of 

computation time until convergence. MSA is known for requiring many iterations before 

convergence because the auxiliary flow pattern generated at each iteration contributes equally 

to the final solution (e.g., Bekhor et al., 2007). Liu et al. (2009) test different alternative pre-

defined averaging schemes, and introduce the method of successive weighted averages 

(MSWA). While being pre-defined, the MSWA allows giving higher weigh to auxiliary flow 

patterns from later iterations, and the step-size γn at iteration n is defined as the following.  

 
1 2 ...

d

n d d d

n

n
 

  
    (30) 

where d≥0 is a real number. Increasing the value of d moves more flow towards the auxiliary 

solution. The MSA is a special case of the MSWA, namely when d=0.  

5.5 CONVERGENCE OF PROPOSED SOLUTION METHODS 

To obtain convergence, both RSUE conditions have to be fulfilled. The condition (11) on 

unused routes will always be fulfilled upon termination of the algorithm, as Step 1 induces that 

if additional attractive routes (violating condition (11)) exists, these will be added to the choice 

set. The other RSUE condition (10) is fulfilled if the flow is allocated among the paths in the 

restricted choice sets so that the flow solution fulfil the ‘SUE’ condition among these paths. To 

our knowledge, no proof of convergence has been given for the standard DUE version of the 

pairwise path-swapping algorithm. The proposed solution algorithm based on pairwise path-

swapping may thus be seen as heuristics only. However, Carey and Ge (2012) provide 

numerical evidence of promising convergence in the DUE case, and our numeric results also 

indicate nice convergence behaviour of the path-swapping algorithm when using the 

transformed costs (section 6). Some of the other path-based DUE and SUE solution algorithms 

(such as the SUE DSD proposed by Damberg et al. (1996)) has been shown to converge under 

certain assumptions, and thus applying e.g. the Damberg et al. (1996) algorithm for the 

Restricted master problem phase (Step 2) will induce convergence to a RSUE solution. 
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5.6 COMPUTATIONAL PERFORMANCE OF THE ALGORITHMS 

For large-scale applications, it is important that the algorithms adopted are computationally 

attractive. The path searches (Column generation phase) and the network loading are usually 

by far the most expensive components in practical implementations. The number of path 

searches and network loadings needed per iteration, as well as the complexity of the path 

searches, varies across alternative algorithms. Regarding the Column generation phase, the 

RSUE(min) is far more computationally attractive (per iteration) than the RSUE(max). Firstly, 

searching for only one shortest path is far less computationally demanding than searching for k 

shortest paths. Secondly, single shortest path algorithms are available to identify the shortest 

path from an origin to all destinations, whereas the available k-shortest path algorithms find 

only the k shortest paths between two points. Moreover, per iteration of the Column generation 

phase in general z searches, each with calculation complexity ( log( ) )O V V A  , are needed for 

the RSUE(min), while z2searches, each with calculation complexity ( ( log( ) ))mO k V V V A    , 

are needed for the RSUE(max) (Cormen et al., 2009). 
 

 Regarding the number of network loadings, the proposed solution algorithm performs 

one network loading as part of Step 3. However, it should be noted that some of the proposed 

approaches for the Restricted master problem phase may also require one or several network 

loadings. The pairwise path-swapping algorithm with pre-determined step-size is attractive by 

not requiring any network loadings in Restricted master problem phase, whereas algorithms 

such as Han (2007) require an additional network loading per OD-pair per iteration to 

determine the step-size. The DSD algorithm proposed by Damberg et al. (1996) may be very 

time consuming per iteration as it iterates the inner assignment step until full convergence 

among the choice set before the Column generation phase is re-evaluated. This requires 

numerous time consuming network loadings (as well as Armijo line searches). 
 

 The calculation complexity thus varies greatly between specifications of the generic 

solution algorithm (and solution algorithms in general). Comparison of convergence speed 

across algorithms should thus be based on computation time rather than number of iterations. It 

should be noted that while simulation is also computationally demanding, none of the proposed 

variants of the generic solution algorithm requires simulation for the MNL or PSL choice 

models.  
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6 NUMERICAL RESULTS 

We have evaluated several different versions of the proposed generic solution algorithm 

numerically on two case-studies, namely the well-known Sioux Falls network and the large-

scale Zealand network.  

 The case-studies also serve to demonstrate that the relative gap measures proposed are 

attractive to apply in the evaluation of the convergence of certain Logit-type RSUE(min) and 

RSUE(max) solution algorithms.  

6.1 SIOUX FALLS NETWORK 

The Sioux Falls network contains 76 links and 528 OD-pairs between which there is a non-zero 

demand2. We present the application of several instances of the solution algorithm with the 

focus on the MNL model. Firstly, the RSUE(min) as well as the RSUE(max) problem are 

addressed by applying the cost transformation to solve the Restricted master problem phase by 

using the pairwise path-swapping algorithm introduced in section 5.4 All assignments used 

θ=0.1 and were done using MATLAB. 

6.1.1 MNL RSUE(MIN) AND MNL RSUE(MAX) 

Figure 1 reports the proposed two-part convergence measure for the path-swapping MNL 

RSUE(min) and the MNL RSUE(max)3 solution algorithms with d=0. As can be seen, the 

MNL RSUE(min) as well as the MNL RSUE(max) solution algorithms both provided nice 

convergence patterns. The MNL RSUE(min) in general converged fastest, requiring only 7 

iterations for the equilibrium choice sets to (with a few exceptions) be generated, and by 

iteration 75 the distribution of flow among used paths also had converged to the same low level 

as reached at iteration 250 of the MNL RSUE(max).  

                                                 
2 See Bar-Gera (2013) for a detailed description of the network structure, performance and demand. Note that the 
travel cost function are constituted solely by the travel time. 
3 It is important to note that the gap for unused paths of the RSUE(max) cannot be directly compared to that of the 
RSUE(min) as the measures are computed differently. 
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Figure 1 – Convergence of MNL RSUE(min) and MNL RSUE(max), Sioux Falls network 

 Figure 2 illustrates the development of the minimum, average and maximum size of the 

path choice sets as the two solution algorithms progress4. The condition on unused paths is 

stronger in the RSUE(max) than in the RSUE(min), which expectedly resulted in larger path 

choice sets. The average choice set size of the MNL RSUE(max) was approximately 7.4 from 

iteration 50 and onwards, which is larger than the largest choice set generated by the MNL 

RSUE(min) algorithm (7 paths). The choice sets had an average size of 2.5 from iteration 5 

onwards when solving for the MNL RSUE(min) flow solution. 

 
Figure 2 – Choice set size, MNL RSUE(min) and MNL RSUE(max), Sioux Falls 

                                                 
4 Iterations 1-50 reported. Minimum and maximum choice set size does not change after iteration 50, and the 
mean choice set size only changes marginally. 
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 Figure 3 shows an example of the generated choice set for one OD-pair. The choice set of 

the MNL RSUE(min) consisted of three paths, whereas the choice set of the MNL RSUE(max) 

contained 10 paths (3 of which are the paths of the MNL RSUE(min)).  

 
Figure 3 – Example of utilised path choice set 1 OD-pair, Sioux Falls. Note: Dashed paths: Paths used in 

RSUE(min). Dashed + continuous paths: Paths used in RSUE(max) 

This example of used paths highlighted a main issue arising when pre-specifying the choice set 

based on free-flow travel time, as often done in traditional SUE assignment algorithms, but 

which are avoided by the RSUE. The path 1-3-4-5-9-8-7-18-20 carried 7% and 16% of the total 

demand between the selected OD-pair in the MNL RSUE(max) and MNL RSUE(min) 

solutions, respectively. This path was however the 41st shortest path when based on free-flow 

travel time (34 minutes as opposed to 22 minutes of travel time for the shortest). Consequently, 

this obviously attractive path would not have been generated to the choice set if a k-shortest 

path approach with k<41 had been used for pre-generating the path choice sets.  
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6.1.2 ALTERNATIVE APPROACHES TO THE RESTRICTED MASTER PROBLEM PHASE 

This section presents the results of an evaluation of four alternative possible approaches for the 

Restricted master problem phase for the MNL RSUE(min) problem. The first two alternatives 

exploited the proposed RSUE model transformation proposed and applied path-based DUE 

solution algorithms: (i) a pairwise path-swapping algorithm (MNL Path Swap) as described in 

section 5, and (ii) an all-or-nothing algorithm assigning all traffic to the path with the lowest 

transformed cost (MNL AoN). The third alternative used the MNL probability formula to 

obtain an auxiliary solution (MNL Inner Logit). Each of these three alternatives were tested 

with two MSWA averaging strategies, namely the MSA (d=0) and one which ‘trusted’ the 

auxiliary solution more (d=2). The fourth alternative was the SUE DSD solution algorithm 

(MNL DSD, Damberg et al., 1996). As aforementioned, the MNL DSD iterates within the 

Restricted master problem phase until a converged solution is found for the ‘conditional’ 

choice set. In the application of the MNL DSD algorithm, the Restricted master problem phase 

was terminated (and new possible attractive paths were identified) when the relative gap on 

used routes reached 0.01%.  

 Figure 4 and Figure 5 illustrate the convergence of the algorithms. The relative gap for 

the choice set composition converged within the first 4-15 iterations (the MNL AoN with d=2 

required 30 iterations), indicating that the final choice sets were generated within the first 

iterations. The convergence of the distribution of flow (which is conditional on the choice set) 

also converged fast for most algorithms. The MNL DSD algorithm required only a very few 

iterations to converge to a very low value of the relative gap measures. The MNL Inner Logit 

with d=2 was the second fastest (in terms of number of iterations), followed by MNL Path 

Swap with d=2. However, both required considerably more iterations than the MNL DSD 

algorithm to converge. The MNL AoN, the MNL Inner Logit and MNL Path Swap path-

swapping algorithms with d=0 required additional iterations to reach convergence. The worst 

performance was seen by the MNL AoN approach with d=2. 
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Figure 4 – Relative gap measure for convergence of choice set composition as function of iteration number, Sioux 

Falls application. Notice the log-scale on the vertical axis 

 

Figure 5 – Relative gap measure for convergence of flow distribution among routes in the choice set as function of 

iteration number, Sioux Falls application. Notice the log-scale on the vertical axis 

 The calculation complexity however differed between algorithms, and especially the 

MNL DSD algorithm was notably more demanding in requiring iterations in the Restricted 

master problem phase until near-convergence for the ‘conditional’ choice set. This aspect has 

also to be considered in the evaluation of algorithms, and Figure 6-Figure 7 show the 

convergence as a function of the computation time rather than the number of iterations. 
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Figure 6 – Relative gap measure for convergence of choice set composition as function of computation time, Sioux 

Falls application. Notice the log-scale on the vertical axis 

 
Figure 7 – Relative gap measure for convergence of flow distribution among routes in the choice set as function of 

computation time, Sioux Falls application. Notice the log-scale on the vertical axis 

 The MNL DSD was not so attractive when considering computation time, as the final 

choice sets were identified after 41 minutes, whereas these were determined within 2-9 minutes 

for the remaining algorithms. This means that while the distribution of flow among the 

available choice set converged fast to an MNL solution (due to the line search, see the dotted 

line in Figure 7), the overall convergence of the MNL DSD was slow. Looking at the overall 

convergence, the MNL Inner Logit with d=2 thus converged the fastest to the final choice sets 

with a relative gap among the used routes of less than 0.01%.  
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 None of the four alternative algorithms required simulation, and each of these thus 

converged to the same solution for repeated applications, given the same initial conditions. The 

RSUE conditions however do not induce uniqueness, and the algorithms tested may therefore 

converge to different solutions which are all MNL RSUE(min) solutions. The non-uniqueness 

lies within the generation of the choice sets, which is also illustrated by the varying average 

and maximum choice set size across algorithms (Table 1). The DUE and SUE both provide 

theoretical uniqueness (only on link-level for the DUE), but this is however typically not seen 

in practical real-life applications anyhow, as the choice sets have to be pre-specified or 

simulated (Watling et al., 2014). Actually, using simulation for path generation in SUE 

additionally induces difficulties in the reproduction of solutions for repeated applications.  

Table 1 – Choice set size characteristics, Sioux Falls 

Method 
Step size Choice set size 

d Min. Avg. Max. 

AoN 
0 1 2.59 7

2 1 4.01 10

Path Swap 
0 1 2.46 7

2 1 3.03 7

Inner Logit 
0 1 2.39 6

2 1 3.37 9

DSD - 1 2.05 4

  

 Using d=0 generated quite similar average choice set sizes across the algorithms (2.39-

2.59), whereas the average choice set size varied more when d=2 (3.03-4.01). The larger choice 

sets when d=2 were due to the larger oscillations of flow in the initial iterations, which were a 

consequence of the larger step-size moving a larger share of the flow to the auxiliary solution. 

This caused larger changes in the costs of the links, which induced more unique routes to be 

generated. The MNL DSD solution algorithm generated small choice sets. This was (also) a 

consequence of the flow solution found in the Restricted master problem phase – the ‘inner 

equilibration’ before considering adding additional routes to the choice sets induced less flow 

fluctuations between iterations. 
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6.2 ZEALAND NETWORK 

Two versions of the proposed RSUE(min) solution algorithm were applied to the large-scale 

Zealand network. Approximately 2.5 million people live in the area covering 9200 km2, and 

the digitised road network representation consists of 12,015 links and 429 zones. The demand 

matrix applied covered a 24 hour period and contained a total of 3.2 million trips across 19 

different user classes and two vehicle types (car and lorry) to be assigned to the road network5. 

The study area consists of urban as well as rural areas, and the congestion level is spatially 

distributed as well as distributed across road type classifications (see Figure 8). 

 
Figure 8 – Network congestion by road type classifications. Cumulative share of links as function of 

Volume/Capacity-ratio 

                                                 
5 The Zealand network is a subset of the network to be used in the Danish National Model, currently under 
development at DTU Transport. 
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 The two tested versions of the algorithm were differentiated by the approach to the 

Restricted master problem phase. One used the pairwise path-swapping approach presented in 

section 5.4 (Path Swap), while the other deployed an approach where the auxiliary solution is 

found by applying the corresponding logit choice probability formula directly (Inner Logit). 

The algorithms have been implemented in the Traffic Analyst traffic assignment module for 

ArcGIS (Rapidis, 2013), and both accommodated the use of the MNL and the PSL models.  

 In the application we specified θ=0.2 and the step-size constant d=2, as an initial test 

comparing d=0 to d=2 found best performance in terms of convergence speed when d=2 (as 

also found in the Sioux Falls application). The generalised travel costs were constituted by a 

weighted sum of free-flow travel time, congested travel time, travel distance, and travel 

(monetary) cost. 

 The calculation time per iteration was approximately one minute for both solution 

algorithms when using a computer with a 3.2 GHz Intel Zeon CPU and 32 GB RAM. Figure 9 

illustrates the convergence pattern as a function of the iteration number for the MNL choice 

model.  

 
Figure 9 – Relative gap measures, Zealand network application. Notice the log-scale on the vertical axis 

 The figure indicates that the applied algorithms seem to provide fast convergence 

behaviour when applied to the large-scale network. The distribution of flow among used routes 

seemed to converge better for the Path Swap algorithm in the first 50 iterations, but the relative 
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gap on used routes reached a very low level of 0.001% at iteration 50 for both algorithms. 

From this iteration the relative gap among used routes was at the same level for the two 

algorithms, although with some fluctuations for the Path Swap algorithm. It is however 

important to remember that this measure of convergence is conditional on the choice set 

composition. The corresponding gap measure converged fast for both algorithms. The measure 

quickly reached zero, but for the Path Swap algorithm it repeatedly increased slightly from 

zero as the algorithm iterated (the redistribution of the flow caused new routes to be attractive). 

It was not until iteration 129 that no extra routes were added to any of the choice sets for the 

algorithm based on path-swapping. The relative gap did however never grow large in these 

increases from zero, indicating that it was only for a few OD-pairs that new routes were 

attractive. This is also indicated by the development of the average choice set size (Figure 10), 

which was almost constant from iteration 10 onwards. The choice sets were thus (generally) 

generated within the first few iterations. 

 We applied the algorithms to the original OD-matrices scaled by different factors ranging 

from 1 to 2. The number of iterations needed to obtain convergence as well as the size of the 

choice sets generated showed expectedly to increase with increasing scale-factor. However, 

both algorithms converged within a reasonable number of iterations for all demand levels 

tested, and overall both algorithms seems to be robust towards the general congestion level in 

the network it is applied to.  

 The converged solution generated was not the same for the two algorithms, as the 

composition of the choice sets varied between them. The Inner Logit generated, on average, 

slightly smaller choice sets (Figure 10). This was probably a consequence of a more ‘equal’ 

distribution of flow between the paths in the initial iterations (smaller oscillations), as indicated 

by a lower relative gap on used routes during the first few iterations. An average choice set size 

of 2.5-3 routes may seem small. However, this should be seen in light of the network 

composition; the case-study area includes, in addition to urban areas, large rural areas in which 

there is no congestion and only one or two relevant alternatives. An analysis of the spatial 

distribution of the choice set size showed that the choice sets generated for trips conducted in 

rural areas were considerably smaller than those generated for urban trips. Finally, we note that 

while identifying a flow solution that fulfils the original SUE conditions would require 
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(infeasible) enumeration of millions of routes for each OD-pair, the solution algorithms 

proposed found converged solutions satisfying the RSUE(min) conditions with a 

computational feasible maximum size of the generated choice sets of 11 routes. 

 
Figure 10 – Minimum, average and maximum choice set size, Zealand application 

 We also implemented and tested the corresponding algorithms for the PSL choice model. 

An analysis of the results showed that, in general, the convergence pattern as well as choice set 

composition and size were similar to the corresponding results obtained when using the MNL 

model. In the PSL application we tested different values of βPS (ranging from –25 to 0) and 

evaluated the results by comparing the link flows obtained with corresponding real life 

observed link flow counts (for 1169 links distributed across the network). The evaluation was 

done using the coefficient of determination (R2) obtained from a linear regression of the 

modelled flows as a function of the observed flows (using the Path Swap algorithm). In general 

very high correspondence were found, with R2=0.9444 when βPS =0 (MNL case), declining R2 

with increasing negative value of βPS until R2=0.9404 when βPS =-25.  

 Last, we performed a disaggregate evaluation of the choice set composition and flow 

distribution for one OD-pair within the study area. Both algorithms generated the same five 

unique routes shown in Figure 11 for the MNL as well as the PSL choice models. The trip was 

a commuting trip and the size and composition of the choice sets seems reasonable; one 
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alternative (Path 3) used motorway as far as possible, one alternative avoided motorway but 

rather used uncongested minor local roads (Path 2) and three alternatives were versions of the 

lowest cost route using a combination of motorway and minor local roads.  

 
Figure 11 – Illustration of generated choice set, 1 OD relation Zealand application 
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The generalised route costs and flow shares for the MNL and the PSL choice models can be 

seen in Table 2 (results from two different βPS values reported). 

Table 2 – Generalised costs and flow distribution for various choice models, 1 OD relation Zealand application 

MNL PSL βPS =-3 PSL βPS =-8.5 

PathID Gen. Cost [-] Flow [%] Gen. Cost [-] PS term [-] Flow [%] Gen. Cost [-] PS term [-] Flow [%] 

1 126.16 22.7 126.07 0.30 21.0 125.90 0.30 16.2

2 130.40 9.7 130.49 0.78 15.2 130.65 0.78 30.9

3 129.19 12.4 129.18 0.48 14.9 129.18 0.48 18.4

4 125.28 27.1 125.20 0.28 23.7 125.05 0.28 16.6

5 125.08 28.1 125.00 0.29 25.1 124.87 0.29 18.0

 In the MNL case, the three routes with the lowest generalised costs (paths 1, 4 and 5) 

attracted 78% of the traffic, whereas the almost unique path 2 only attracted 9.7% of the flow 

despite being only 4% more expensive than the cheapest path. Accounting for path overlap 

changed the distribution of flow between the path as well as the path costs (through 

redistribution of flows for all OD-pairs). While paths 1, 3 and 5 highly overlap, path 2 is the 

most unique path, and thus was the one that attracted flow from the other paths when compared 

to the MNL case. When using βPS =-3 the share on path 2 was a reasonable 15.2%, whereas the 

share on this path was an unreasonable 30.9% when using βPS =-8.5. This highlights the need 

for aggregate as well as disaggregate analysis when evaluating the models; The MNL 

performed best in terms of reproducing link counts, but accounting for path overlapping (using 

a well suited βPS –value) produced the most reasonable distribution of flow among the paths. 

7 DISCUSSION 

We demonstrated that the k-shortest path approach in the Column generation phase for the 

RSUE(max) was feasible for the Sioux Falls network, but its calculation complexity let us to 

not pursue to apply it in the iterative algorithm on the Zealand network. We have supported 

this by performing some initial large-scale tests of the k-shortest path search algorithm of Yen 

(1971), for which we found computation times per OD-pair that would cause infeasibly long 

calculation times in an iterative algorithm on large-scale networks. Consequently, while the k-

shortest path approach in principle is possible to apply, more research is needed to deduce a 

sufficiently efficient choice set generation approach to the RSUE (max). Alternatively, it could 
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also be interesting to investigate other formulations of the operator  { : }ms mc s R   , which 

allows application of efficient choice set generation algorithms while posing stricter 

requirements to the costs on unused paths than the RSUE(min).  

 Another approach could be to reduce the ‘solution space’ through network aggregation. 

Aggregating the network to only include main roads while keeping the network disaggregate in 

the areas surrounding the origin and destination of a trip may not be ‘behaviourally’ unrealistic: 

travellers may actually consider different alternatives with small deviations from each other 

(and having enough network knowledge to do so) around the origin and destination, but may 

only consider (and know of) some main alternatives on the intermediate part of a trip.  

 The efficiency of a step-size strategy varies across networks and demands, and more 

research could be put into how to (dependent on network characteristics) choose a suitable 

step-size strategy. While the DSD algorithm of Damberg et al. (1996) provided slow overall 

convergence, the line search strategy caused the inner assignment problem to be solved very 

fast. Therefore it could be interesting to implement the line search strategy and use this in the 

Inner Logit and Path Swap algorithms (i.e. only one line search per OD-pair per iteration rather 

than an equilibration as in the DSD algorithm). 

 Consistent evaluation of convergence has traditionally been a challenge for conventional 

SUE solution algorithms. The first part of the proposed consistent RSUE convergence measure 

is however also applicable and thus highly attractive to adopt to such SUE algorithms solving 

on a fixed choice set. The user can freely define the thresholds for both parts of the 

convergence measure to reach before the algorithm is terminated. Of course they should 

depend on the network, parameter specification and desired level of convergence. We have 

found that using 0.01% for the sum of the two parts seems to produce a fairly converged 

solution. Boyce et al. (2004) also proposed a threshold of 0.01% for the DUE relative gap 

measure.  
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We compared the modelled link flows to real-life observed link flows for the Zealand 

application, and found remarkably high correspondence. This was despite the parameters not 

having been properly estimated to the RSUE, which would possibly generate even higher 

correspondence. An interesting finding is that the correspondence decreases with increasing 

weight on the path size correction term. This does however not mean that no correction for 

path overlapping should be done, as this might cause the distribution of flow between the paths 

and the choice set composition to be more reasonable (as highlighted by the disaggregate 

Zealand example). A further analysis of this could e.g. consist of a comparison between 

generated paths and corresponding observed real-life route choices.   

8 CONCLUSIONS 

The paper tackles the challenge of applying the RSUE(Φ) model framework to large-scale 

networks and is the first to propose an algorithm to solve for RSUE flow solutions. We have 

demonstrated the applicability, convergence and scalability of different variants of the 

RSUE(min) and RSUE(max) solution algorithm on the well-known Sioux Falls network as 

well as the large-scale Zealand network.  

The Sioux Falls application compared several different approaches to allocate flow between 

routes, and found that the algorithms, in general, converged to the corresponding RSUE 

solution. The application furthermore highlighted (i) the need to evaluate convergence as a 

function of computation time rather than number of iterations and (ii) that the step-size highly 

influences the convergence speed. 

Two promising algorithms were tested for the RSUE(min) on the Zealand network, one 

utilising a cost transformation function to apply a DUE solution algorithm based on pairwise 

path-swapping and the other a traditional SUE algorithm utilising the closed-form choice 

probabilities directly to find the auxiliary solution. These converged fast to fulfil the 

underlying RSUE conditions and were efficient in generating the choice sets within the first 

few iterations. The equilibrated non-universal choice sets were reasonable and computationally 

attractive in size, and we found that the algorithms managed to reproduce real-life observed 

link flows very well for the MNL and the PSL choice models. 
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Abstract: The Deterministic User Equilibrium (DUE) and the Stochastic User Equilibrium 

(SUE) have limitations by allowing only minimum cost routes to be used in the DUE and 

requiring all routes to be used in SUE. The Restricted Stochastic User Equilibrium (RSUE) 

was proposed to remove these limitations and facilitate large-scale application. The RSUE use 

random utility maximisation models for flow allocation among equilibrated non-universal 

choice sets. While no attractive paths are allowed unused, unattractive paths may be used at 

equilibrium. We address this issue by proposing the Restricted Stochastic User Equilibrium 

with Threshold (RSUET) as a model generic to the RSUE. To ensure that no unattractive paths 

are used, the RSUET adds a behaviourally realistic ‘threshold’ condition on the costs which 

needs to be fulfilled among used paths.  

 We propose a corresponding generic solution algorithm and tested several variants of this 

on the large-scale Zealand network. These showed very attractive computation times and that 

the modification supports an improvement in behavioural realism, especially for high-

congestion cases. Extremely fast and well-behaved convergence to equilibrated solutions 

among non-universal choice sets was seen (across different congestion levels, scale parameters 

and step-sizes). We validated the choice set composition by comparisons to 16,618 observed 

route choices and found the RSUE and RSUET to perform equally well. Both models were 

also very successful in reproducing observed link counts. 

 

Keywords: Restricted Stochastic User Equilibrium; Restricted Stochastic User Equilibrium 

with Threshold; Choice Set; Solution Methods; Traffic Assignment; Large-Scale Application. 

 
  



 

 

246 

  



 

 

247 

1 INTRODUCTION 

The most well-researched and commonly applied discrete choice models based on random 

utility maximisation (RUM) represent random error structures through the use of error terms 

which are assumed to follow a distribution with unbounded support (e.g. normal distribution 

leading to the probit model or gumbel distribution leading to the logit-family of models). 

However, choosing a distribution with unbounded support leads to the assignment of a non-

zero choice probability to all available alternatives no matter how costly they may be (Watling 

et al., 2014). Whereas this may lead to behaviourally questionable choices in many 

applications, typically it does not pose computational challenges for forecasting or parameter 

estimation in most discrete choice model applications, e.g. to the choice of mode of transport. 

It however poses a significant challenge in the application to route choice modelling because 

the number of alternatives are so large, and may not be perceived by all travellers. 

 In route choice modelling the (universal) set of available alternatives is typically 

infeasible to enumerate and allocate traffic to, even for moderate-sized networks. This issue is 

further complicated by the ‘scalability’ of the problem, meaning that even small changes (e.g. 

the addition of a few links) in one part of the network ‘scales’ to require also updating choice 

sets and redistributing flows in other parts of the network. Consequently, in most practical 

route choice modelling applications to find the Stochastic User Equilibrium (SUE, Daganzo 

and Sheffi, 1977), the solution algorithms either (i) terminate before the full universal choice 

set is generated (such as the simulation-based SUE algorithm of Sheffi (1985)), or (ii) find 

SUE among a fixed pre-specified choice set (e.g., Bekhor et al., 2008; Zhou et al., 2012).  

1. In the first case it is difficult to specify when to terminate the algorithm in order to 

include a sufficient sample of all relevant routes, since there could be almost infinitely 

many routes to which traffic would be allocated. In practice the approach also poses 

convergence problems, since both the route set generation and the choice model use 

sampling, typically via Monte Carlo simulation. This may also raise a question of 

sample-correction methods, which is usually overlooked in applied models (e.g., 

Frejinger et al., 2009; Guevara and Ben-Akiva, 2013). 

2. In the case of pre-defined choice sets it is difficult to pre-specify the choice set to include 

all relevant alternatives without knowing in advance the equilibrium congestion-
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dependent travel times in the network. This is especially the case when using the model 

to forecast future situations or effects of policies, since there is no chance to know the 

congested travel times from e.g. observations in such cases. The potential result of this 

is the generation non-equilibrated and inconsistent choice sets, which fails to include 

and exclude paths that are, respectively, attractive or unattractive at equilibrium.. 

 Watling et al. (2014) addressed the issues raised above and formulated the Restricted 

Stochastic User Equilibrium model (RSUE). The RSUE differs from the SUE conditions by 

specifying an equilibrated flow solution according to the well-researched choice models, 

however among an equilibrated (possibly non-universal) choice set. In addition to some 

behavioural advantages (e.g., completely unrealistic routes may be omitted), the RSUE is very 

attractive in practical implementation by allowing the choice sets to be consistently formed to 

fulfil the underlying conditions at equilibrium, rather than to solely rely on the solution 

algorithm in the generation of these. In Rasmussen et al. (2014b) we proposed a corresponding 

solution algorithm obviating the need for simulation. We found nice convergent behaviour of 

various instances of this to solutions with equilibrated choice sets of reasonable sizes.  

 The RSUE was formulated to allow a non-universal choice set by implicitly posing a 

condition on the costs on unused paths. While ensuring that no attractive routes are left unused, 

the RSUE conditions do not implicitly ensure that the choice sets of used routes consist only of 

attractive routes leaving unattractive routes unused. We could imagine that a route which in 

some initial iteration of the solution algorithm is attractive and thus included into the choice 

set, becomes highly unattractive at the equilibrium state. For example, imagine an OD 

movement for which there are two attractive paths in the free-flow state. Path 1 is slightly 

cheaper than Path 2, but uses links on which the travel cost is highly sensitive to the flow. It is 

attractive to assign traffic to Path 1 in the initial iteration, with the result of a large increase in 

the travel cost. Path 1 thereby becomes highly unattractive, and flow will be moved towards 

Path 2. The RSUE will however not move all flow away from Path 1, no matter how 

unattractive it may be – it will still be assigned traffic at equilibrium since there is no 

mechanism to exclude paths once they are in the choice set. This may lead to behaviourally 

questionable solutions; imagine e.g. that the small amount of traffic on Path 1 causes this used 

path to cost 50% more than Path 2 at equilibrium. We believe that this issue could be 
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especially evident in highly congested cases, and the RSUE has no built-in rules for the 

exclusion of such unattractive paths – this is left up to the solution algorithm adopted. In this 

paper, we aim to address this through the formulation of a model generic to the RSUE, namely 

the Restricted Stochastic User Equilibrium with Threshold model (RSUET). The RSUET has 

built-in rules providing aid for the solution algorithms to utilise in the exclusion of paths, 

ensuring that a RSUET flow solution is an equilibrated solution on equilibrated choice sets 

consisting only of the attractive paths. We propose a corresponding consistent solution 

algorithm to the RSUET model and validate several variants of this through large-scale 

application to the Zealand area. The validation consists of a comparison to the results and 

convergence of corresponding RSUE formulations. Comparisons are also done to a link- and 

simulation-based (possibly mixed) multinomial probit SUE solution algorithm, which is 

currently applied in the Danish National Model (Rich et al., 2010). We furthermore validate the 

distribution of the flow by comparison to real-life link counts and validate the choice sets 

generated by aggregate and disaggregate comparisons to corresponding observed route choices 

collected via GPS.  

 The remainder of the paper is organised as follows. Section 2 introduces the notation 

used, motivates the need for the new set of conditions and introduces the RSUET. In section 5 

we present a RSUET solution algorithm and discuss different possible variants of this. 

Different variants of the solution algorithm are evaluated by application to the Zealand area, 

and section 4 introduces the case study along with the evaluation criteria and parameter-setup 

used etc. Section 5 presents and evaluates the results obtained, and in section 6 we discuss the 

findings draw the main conclusions. 
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2 RESTRICTED STOCHASTIC USER CONDITIONS WITH THRESHOLD 

The notation used in the paper is introduced initially. Subsequently, we motivate the need to 

extend the RSU conditions and propose a set of conditions generic to the RSU conditions and a 

corresponding equilibrium model. 

2.1 NOTATION 

We consider a network as a directed graph composed of A links (arcs), indexed a = 1, …, A, 

denote the non-negative flow on link a as fa, and let f be the A-dimensional vector of link 

flows. The actual flow-dependent (generalised) travel cost on link a is assumed to be a 

continuous function of the flow, and denote it by ta(f).  

 The network consists of M OD-pairs, and the demand is given by the non-negative M-

dimensional vector d. The m-th element dm of d thus refers to the demand between OD-pair m. 

For each OD-pair m, let Rm be the set of all simple acyclic paths (routes) between the origin 

and destination of m, and let Nm refer to the number of paths in Rm. R refers to the joint set of 

all simple paths across OD-pairs, and this set has the dimension 
1

M

m
m

N N


 .  

 Denote the flow on path r  Rm between OD-pair m as xmr and let 

 
1 211 12 1 21 22 2 1 2, ,..., , , ,..., ,..., , ,...,

MN N M M MNx x x x x x x x xx =  be the N-dimensional flow-vector on 

the universal choice set across all M OD-pairs, so that the notation xmr refers to element number 

1

1

m

m
k

r N




  in the N-dimensional vector x. The convex set G of demand-feasible non-negative 

path flow solutions G is given by: 

 
1

: , 1, 2,...,
mN

N
mr m

r

G x d m M


 
    
 

x      (1) 

where N
  denotes the N-dimensional non-negative Euclidian space. The corresponding 

convex set of demand-feasible link flows is: 

1 1

: f , 1, 2,..., ,
mNM

A
a amr mr

m r

F x a A G
 

 
      
 

f x     (2) 

where amr =1 if link a is part of path r for OD-pair m and zero otherwise.  
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 Let ( )mrc x  be the actual (generalised) cost on path r for OD-pair m. As links may be 

used by several paths within and across the OD-pairs, ( )mrc x  depends on the flow vector x. 

Additionally, the cost  mrc x  is a positive value and may be a weighted sum of several 

attributes, such as e.g. travel time, travel distance, and congestion charge.  

 In vector/matrix notation, let x and f be column vectors, and define  as the AN-

dimensional link-path incidence matrix. Then the relationship between link and path flows may 

be written as f = Δx . We suppose that the travel cost on path r for OD-pair m is additive in the 

link travel costs of the utilised links: 

 
1

( ) ( )
A

mr amr a
a

c t


  x x                   (r  Rm; m = 1,2,…,M; Gx ) .  (3) 

 Let  c x  be the vector of costs on all paths. The RSUET model distinguishes between 

used and unused paths, and consequently we let mR  be the subset of mR  consisting of all 

utilised paths (non-zero flow) for OD-pair m (i.e. m mR R ). Let mN  denote the number of 

utilised paths for OD-pair m. R  refers to the joint set of all used paths across OD-pairs, and 

this set has the dimension 
1

M

m
m

N N


  . 

 In the evaluation of the solution algorithms we utilise observed route choices collected 

from a GPS-based travel survey. The origin and destination of each observation are included 

among the M OD-pairs in the network, and the observed paths are of course to find in the 

universal set R. The set of observed paths is denoted by obsR R . 

 The notation presented above is readily modified to include the more general case of (a) 

multiple user classes, where classes may differ in their definition of travel cost and in the OD 

matrix, and (b) multiple vehicle types, which may additionally differ in the contribution they 

make to total traffic flow. This was also done in Rasmussen et al. (2014b) and in this case we 

define m instead to denote a commodity which is a combination of OD movement, user class 

and vehicle type, so that M is the product of the number of OD movements, user classes and 

vehicle types. In order to reflect different contributions to traffic flow, we suppose that the 

demand dm for commodity m is measured in equivalent passenger car units (pcu). The only 
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modification required to the notation is then that tam(Δx) now denotes the travel cost on link a 

as perceived by commodity m when the total pcu route flows are x. Thus, the route cost-flow 

functions are defined by: 

 
1

( ) ( )
A

mr amr am
a

c t


 x Δx             (r  Rm; m = 1,2,…,M).  (4) 

 Under these changes, all the subsequent models and methods presented may be applied to 

this more general case. In the following we shall continue to refer to OD-pair m, but this may 

as well, in the case of multiple vehicle and/or user classes, be a referral to commodity m. In 

section 5 we perform tests using 19 user classes and 2 vehicle-types. 

 The following notation is also used in the paper:  

- la is the length of link a. 

- Lmr is the length of path r for OD-pair m. 

- mr  is the set of links constituting path r for OD-pair m. 

-  { }mr mc : r R    is the mapping function used in the RSUET definition, specifying 

a criterion to be fulfilled by unused paths. 

-    : ;ms m mc s R x ς  is the mapping function used in the RSUET definition, 

specifying a criterion to be fulfilled by used paths. 

- z is the number of zones. 

-  ( )mr mP Rc x   is the proportion of flow on OD movement m that uses path r among 

the alternatives in the restricted set of utilised paths mR  for OD-pair m: 

 ( ( ) ) Pr ( ) ( ) , ,mr m mr mr ms ms m mP R c c s r s R r R               c x x x    

- , ( )m minc x   is the cost of the minimum cost route in the set mR . 

- minN  is a constant used in the proposed solution algorithm, expressing the minimum 

choice set size required to allow the removal of routes. 

- Kmin is a constant used in the proposed solution algorithm, expressing the iteration 

number from which routes are allowed to be removed from the choice sets. 

  



 

 

253 

2.2 MOTIVATION 

Rasmussen et al. (2014b) proposed a RSUE solution algorithm and tested various variants of 

this on the well-known Sioux Falls network (the cases of RSUE(min) and RSUE(max)) as well 

as the large-scale Zealand network (the case of RSUE(min)). While being computationally 

tractable for both applications, the tests highlighted an issue which potentially poses a 

behavioural as well as computational challenge. The issue arises in cases where routes which 

may have been attractive (and thus generated to the choice sets) in earlier iterations become 

highly unattractive at equilibrium. Such unattractive routes are not removed from the 

equilibrated choice sets. 

 The computational challenge of this is not so problematic for the RSUE(min) application, 

as the equilibrium conditions require that no unused routes are cheaper than the cheapest used 

route (i.e. the included unattractive path has no influence on the cost condition to be fulfilled 

by unused routes). The included but highly unattractive route will however potentially induce a 

large computational challenge for large-scale application of the RSUE(max); the conditions 

require all routes cheaper than this unattractive route to be enumerated. This causes the choice 

sets to continuously grow as the iterations of the proposed solution algorithm progress. The 

computational burden thereby increases considerably with the iterations by requiring to solve a 

k-shortest path problem for each OD-pair for increasingly large values of k. A total of z2 k-

shortest path problems thereby needs to be solved in each iteration, and each of these problems 

has a large calculation complexity of ( ( log( ) ))mO k V V V A     (Cormen et al., 2009). 

Consequently, the proposed RSUE(max) solution algorithm will be very computationally 

demanding for large-scale applications. See Rasmussen et al. (2014b) for further details on this 

issue.  

 One could argue that the complication of the issue is restricted to the choice of solution 

algorithm, and that alternative algorithms could be sought. However, the issue may also lead to 

a behaviourally unrealistic distribution of costs on used routes. This is exemplified by Figure 1 

and Figure 2, which report the relative generalised costs, at equilibrium, between each used 

route and the cheapest used route for the corresponding choice set on the Sioux Falls network 

(downloaded from Bar-Gera, 2013). 
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Figure 1 – Number of observations as a function of the ratio between the cost of a used route and the cost of the 

cheapest used route in the choice set for the MNL RSUE(min) application, Sioux Falls network. Grouped 

by the cost of the cheapest used route in the choice set 

 
Figure 2 – Number of observations as a function of the ratio between the cost of a used route and the cost of the 

cheapest used route in the choice set for the MNL RSUE(max) application, Sioux Falls network. Grouped 

by the cost of the cheapest used route in the choice set 
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 Some used routes, though not very much used, have a considerably higher generalised 

cost (e.g., 100-200% higher) than the cheapest route for the corresponding OD movement. This 

does not seem behaviourally justifiable, and we believe it arises from the fact that the 

conditions only pose a cost restriction on unused routes and not on the used routes; there are no 

conditions ensuring reasonability of the used routes, and there is no possibility to specify 

whether a small or large set of used routes is generally preferred. It is thus not an algorithmic 

problem only, but rather seems to stem from the lack of a mechanism in the underlying RSU 

conditions. Recall the definition of the RSU conditions (Watling et al., 2014): 

Definition: Φ-Restricted Stochastic User Conditions (RSU(Φ))  

For each OD movement m=1, 2,..., M: 

i) the proportion of travellers on any used path is equal to the probability that that 

path has a perceived utility greater than or equal to the perceived utilities on all 

alternative used paths; 

ii) the ‘reference cost’ is a value uniquely defined by some relationship Φ to the 

actual travel costs on the used paths;  

iii) the actual travel cost which would be experienced by a traveller on any unused 

path is greater than or equal to the reference cost as defined in ii). 

 The definition specifies a reference cost to be applied to the unused routes 

(condition iii)). However, for used routes, the definition specifies a condition to be 

fulfilled regarding the distribution of flow, but does not specify a reference cost that can 

assist in determining whether a route should be used. This has the implication that there 

is no built-in condition to be used for dropping routes by the solution algorithms. A 

definition of such a condition to be fulfilled by used routes could be to use the same 

reference cost as specified for the unused routes by condition iii). Such a specification 

would however be less useful; for example, for RSU(min) this would cause all but the 

shortest route(s) to be excluded, and for RSU(max) no effect would be seen. Rather than 

using the same reference cost, the next section proposes a new set of altered RSU 

conditions which applies two reference costs, one to be fulfilled among used routes and 

one to be fulfilled among unused routes.  
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2.3 DEFINITION OF THE RESTRICTED STOCHASTIC USER WITH THRESHOLD CONDITIONS 

We extend the definition of RSU(Φ) by adding an additional function with a vector of OD-

specific parameters, which defines a second type of reference cost, namely one which bounds 

the actual cost of used routes. After defining the general case and the corresponding 

equilibrium model below, we discuss some logical examples of this function.  

Definition: Restricted Stochastic User with Threshold conditions (RSUT(Φ,))  

For each OD movement m=1, 2,..., M: 

i) the proportion of travellers on any used path is equal to the probability that that 

path has a perceived utility greater than or equal to the perceived utilities on all 

alternative used paths; 

ii) the ‘external reference cost’ is a value uniquely defined by some relationship Φ to 

the actual travel costs on the used paths;  

iii) the actual travel cost which would be experienced by a traveller on any unused 

path is greater than or equal to the external reference cost as defined in ii); 

iv) the ‘internal reference cost’ is a value uniquely defined by some relationship  to 

the actual travel costs on the used paths; 

v) the actual travel cost on any used path is less than or equal to the internal 

reference cost as defined in iv). 

Note: The words ‘internal’ and ‘external’ refers to the choice set, in that the internal costs are 

used to bound costs on route inside the choice set (chosen routes) and external costs are used 

for those routes outside the choice set. 
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 Based on these conditions we can then define the corresponding equilibrium model: 

Definition: Restricted Stochastic User Equilibrium with Threshold (RSUET(Φ,))  

Suppose that we are given a collection of continuous, unbounded random variables 

 : , 1,2,...,mr mr R m M    defined over the whole choice set mR ; and that for any non-empty 

subsets mR of mR  (m = 1,2,…,M), probability relations ( ( ) )mr mP Rc x   are given over mR  (m = 

1,2,…,M) by considering the relevant marginal joint distributions from 

 : , 1,2,...,mr mr R m M   . Given Φ and Ω then the route flow x  G is a RSUET( ,Ω) if 

and only if for all r  Rm and m = 1,2,…,M: 

        0               ( )        : ;mr m mr m mr m mr ms m mx r R x d P R c c s R         c x x x ς    

   (5) 

    0               { };mr m mr ms m mx r R c c : s R      x x ξ    (6) 

where   { };ms m mc : s R x ξ  and  ( )mr mP Rc x   are defined as in section 2.1. The 

function    : ;ms m mc s R x ς  is exogenously defined and specifies one threshold 

value (internal reference cost) per OD movement. In the definition above, the  -

function is specified in a way that enables it to be formulated in numerous different ways. 

This could e.g. be an absolute non-negative threshold, a relative threshold relative to the 

minimum cost used route, or a combination. In the application we consider the following 

threshold function: 

       : ; min :ms m m m ms mc s R c s R     x x   (7) 

where m≥1. As m   the condition v) in the RSUT(Φ,) conditions becomes redundant, and 

so in this way the RSUT(Φ,)) conditions are a generalisation of the RSU(Φ) conditions. 

When m = 1 for all m=1, 2,..., M, then a solution of the RSUET is also a DUE solution.  

 The choice of the thresholds in  causes these to have more or less influence on the 

solutions. We can either choose to have relatively low computational costs with relatively few 

used routes (and therefore a strong effect of the threshold), or to enable the inclusion of more 
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used routes (and less effect of the threshold) at a higher computational cost. Choosing a high 

threshold, it poses not so much a behavioural parameter as much as a way of controlling the 

computation time of the algorithm by allowing it to drop routes that become highly costly (and 

little used). On the other hand, with a lower threshold the parameter is given more behavioural 

weight, since a low value will cause the exclusion of some routes with moderate cost 

(threshold will decide that these are unlikely to be used).  

3 RSUET SOLUTION METHODS 

3.1 RSUET(Φ,) SOLUTION ALGORITHM 

We introduce a generic solution algorithm for the RSUET by adapting the RSUE solution 

algorithm proposed in Rasmussen et al. (2014b). The adaptation is done in a way that allows it 

to account for the additional threshold condition. An additional step is added which checks for 

the fulfilment of the additional cost threshold and removes violating routes, if relevant. An 

iteration of the proposed solution algorithm consists of 4 steps, namely the Column generation 

phase, the Restricted master problem phase, the Network loading phase and the Threshold 

condition phase: 

Algorithm  

Step 0 Initialisation. Iteration n=1. Perform deterministic all-or-nothing assignment for all 

m=1, 2,..., M OD-pairs and obtain the flow vector for all utilised paths nX . 

Perform network loading, compute link travel costs  a nt f  on all network links a A , 

and compute generalised path travel costs  mr nc X . Set n=2. 

Step 1 

 

Column generation phase. Let km,n-1 denote the current number of unique paths in the 

choice set of used paths for OD-pair m=1, 2,..., M in iteration n-1. 

For RSUET(min, Ω):  

For each origin, 

perform a shortest 

path search to all 

destinations based on 

actual link travel costs

For RSUET(Φ, Ω): 

For each OD-pair m=1, 2,..., M, 

based on actual link travel costs

 1a nt f , check for a new route to 

add to the choice set ,m nR  by 

For RSUET(max, Ω):  

Perform km,n-1 - shortest 

path search for each OD-

pair m=1, 2,..., M based on 

actual link travel costs 
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 1a nt f . If for any 

OD-pair m=1, 2,..., M 

a new unique path r is 

generated, add it to the 

choice set with flow 

, 1mr nx  =0. 

applying some path generation 

method which supports the 

fulfilment of the Φ criterion. If 

for any OD- pair m=1, 2,..., M a 

new unique path r is generated, 

add it to the choice set with flow 

, 1mr nx  =0; if several routes are 

possible, add only the shortest 

one. 

 1a nt f .  

If for any OD-pair m=1, 

2,..., M a new unique path 

r is generated among the k 

generated paths, add it to 

the choice set with flow 

, 1mr nx  =0; if several new 

unique paths are possible, 

add only the shortest one. 

Step 2 Restricted master problem phase. Given the choice sets ,m nR  for all m=1, 2,..., M, 

apply the selected inner assignment component and averaging scheme to find the new 

flow solution Xn. 

Step 3  Network loading phase. Perform the network loading to obtain fn from Xn. Compute 

the link travel costs  a nt f , the generalised path travel costs  nC X  and (if 

relevant/included) the path-size factors. 

Step 4 Threshold condition phase. Given the choice sets ,m nR  for all m=1, 2,..., M, check 

whether the threshold condition  mr nc X ≤ ({cms(x) : s  mR }; m ) is violated for 

any ,m nr R   for m= 1, 2,..., M. Remove relevant routes (maximum 1 route per OD-

pair), redistribute the flow on routes removed among the remaining routes in the 

respective choice sets. If no routes have been removed for any of the M OD-pairs, 

continue. Else, perform the network loading, compute the link travel costs  a nt f , the 

generalised path travel costs  nC X  and (if relevant/included) the path-size factors. 

Step 5 Convergence evaluation phase. If the gap measure consisting of the sum of 

.Stoch
nRel. Gap  and , .Unused Stoch

nRel.Gap  is below a pre-specified threshold  , Stop1. Else, 

set n=n+1 and return to Step 1. 

 

                                                 
1 See section 4.3 for the computation of the two gap measures 
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 Please note that the path flow vector is denoted by X rather than x. This is to emphasise 

that in practical implementations it is not possible/practical to operate with the vector x, as this 

requires enumerating the universal choice set for all OD-pairs to obtain the dimension of the x 

vector. Rather, in practical implementations, the dimension of the flow vector is not pre-

specified, but is allowed to increase as the algorithm progresses. The same occurs for the path 

cost vector c(x), which we have denoted C(X) to highlight that this might grow as the 

algorithm progresses. The elements xmr and cmr thus refer to the vectors X and C, respectively. 

3.2 THE COLUMN GENERATION PHASE, THE RESTRICTED MASTER PROBLEM PHASE AND THE 

NETWORK LOADING PHASE 

The RSUET solution algorithm allows adapting the same procedures as the RSUE solution 

algorithm proposed in Rasmussen et al. (2014b). The algorithm is thus very flexible in its 

specification, allowing, for example, in the Restricted master problem phase the use of either 

standard path-based SUE solution methods or path-based DUE solution algorithms. The latter 

is only relevant for certain logit-type choice models, in which case the cost transformation 

functions introduced in Rasmussen et al. (2014b) should be used.  

3.3 THE THRESHOLD CONDITION PHASE 

The RSUET solution algorithm is flexible regarding the specification of how it might be 

ensured that the threshold conditions are fulfilled upon termination of the algorithm. There are 

several dimensions to consider in the specification, such as e.g. whether to (i) allow the 

exclusion of one or several routes per OD-pair per iteration, (ii) allow excluding paths from the 

initiation of the solution algorithm and for all iterations or e.g. only after 15 iterations and only 

every 5 iterations, (iii) require a minimum number of paths in the choice set to allow excluding 

routes, and (iv) redistribute flow among the remaining used paths according to the relative 

flows, the relative costs or using some other approach. One possible approach to the Threshold 

condition phase is introduced in the following: 
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Step 4.0 Set m=1 

Step 4.1 For each route r in the choice set ,m nR , check whether the threshold condition  mr nc X ≤ 

({cms(x) : s  mR }; m ) is violated. If any route r violates this condition, and if m minN N   

and n≥Kmin, then flag the route that violates the threshold condition the most.  

Step 4.2 If no route is flagged by Step 4.1 and if m<M, set m=m+1 and return to Step 4.1. If no routes 

are flagged by Step 4.1 and if m=M, continue to Step 4.3. If a route r is flagged by Step 4.1, 

remove the route from the choice set and redistribute flow xmr,n among the remaining 

currently-used routes s according to the following: ,
, , ,

,

ms n
ms n ms n mr n

m mr n

x
x x x

d x
  


. If m<M, 

set m=m+1 and return to Step 4.1. If m=M, continue. 

Step 4.3 If no routes have been removed for any of the M OD-pairs, continue. Else, perform the 

network loading, compute the link travel costs  a nt f , the generalised path travel costs 

 nC X  and (if relevant/included) the path-size factors. 

 

 We know that the link flows, and consequently also the route travel times, fluctuate much 

in the initial iterations, as algorithms move a large share of the flow towards the auxiliary 

solution in each iteration. This induces that a route just introduced to the choice set – and 

which potentially is highly attractive at convergence – may have a very high cost as this is 

assigned a lot of traffic. Applying the threshold condition at this stage would thus potentially 

remove this attractive route, with the result of having to add it again in the next iteration. In 

order to hinder this we allow the flow on routes to be ‘smoothed’ through conducting Kmin 

iterations (e.g. 15 iterations) before the potential removal of any routes. A route which at 

iteration Kmin is still unattractive will, due to the allowance of ‘smoothing’ the flows through 

Kmin iterations and its high cost, carry a small share of the flow when removed. This leads to 

the additional benefit of the flow redistribution possibly not affecting the travel costs on the 

remaining routes so much (i.e. it will not ‘destabilise’ the solution algorithm). We also seek to 

avoid ‘destabilisation’ by additionally allowing a maximum of one route to be removed per 

choice set per iteration and by requiring that the choice set should contain a minimum of minN  

routes to allow the removal of routes. 
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4 LARGE-SCALE CASE STUDY: ZEALAND AREA 

We used the large-scale case study of the Zealand Area to evaluate the RSUET model 

framework and demonstrate the applicability of several variants of the solution algorithm. This 

case study was also used in Rasmussen et al. (2014b). A main objective was to evaluate how 

large an impact the addition of the threshold condition has on the computation time and the 

equilibrium solution for different configurations of the model and for different network 

conditions (congestion levels). Among others, the evaluation used real life observed data to 

assess the realism of the solutions. 

4.1 CASE STUDY 

The case network covers the eastern part of Denmark (primarily Zealand). This area has 

approximately 2.5 million inhabitants. The network representation in the model consisted of 

12,451 links (corresponding to 18,706 one-directional links in the network graph) being a 

geographically limited subset of the network used in the Danish National Model (Rich et al., 

2010). The demand used stems from the Danish National Model, and the demand matrices 

included a total of 3.2 million daily trips done within, through, into and out from the study 

area. These trips were categorised in 19 different user classes and three vehicle types (car, van 

and lorry).  

 We also had access to a total of 16,618 GPS traces performed in car within the study 

area. These were utilised to perform a disaggregate evaluation of the algorithms’ ability to 

reproduce observed route choices; The origin and destination of each trip were added to the 

network and corresponding trips were appended to the demand matrix (with zero demand to 

not cause additional congestion in the network). The GPS data stem from two data-sources; 

554 observations were collected in a person-based data collection in which travellers carried 

the GPS unit with them during all their travels (across modes of transport, see Rasmussen et 

al., 2014a). The remaining 16,064 observations were collected in a vehicle-based data 

collection among a sample of employees of the Municipality of Copenhagen. While the second 

source is richer in the number trips, the first also contains information on the personal 

characteristics of the car drivers. 
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4.2 TESTED ALGORITHM 

Several variants of the solution algorithm proposed in section 3 were implemented into the C#-

based Traffic Analyst software package (Rapidis, 2014). This software package also contains a 

(possibly mixed) link-based multinomial probit MSA solution algorithm (denoted MNP SUE 

and mixed MNP SUE in the remainder of this paper).  

 The tests focused on the RSUET(min, Ω) formulation rather than the RSUET(max, Ω). 

The RSUET(max, Ω) is a lot more computationally demanding, as (i) z2 k-shortest path 

searches are required to cover all OD-pairs, as opposed to z searches for the single shortest path 

method, and (ii) the k-shortest path search algorithm has a calculation complexity of 

( ( log( ) ))mO k V V V A     for each search, as opposed to ( log( ) )O V V A   for the single 

shortest path search method (see Rasmussen et al., 2014b). We implemented and did some 

initial tests of the k-shortest path algorithm. While managing to improve the computation time 

considerably compared to a first ‘non-optimised’ implementation, it still took approximately 2 

seconds to compute the k=100 shortest paths between Rome and Copenhagen in the Transtools 

network (Rich et al., 2009). This has roughly the same size as the Danish National Model 

network, and the calculation time is about 100,000 times longer than the time required to 

compute the single shortest path between the same OD relations. Consequently, we did not 

manage to reach sufficiently low computation time levels to facilitate implementation in the 

iterative RSUET(max, Ω) algorithm, and believe that there is a need for further research to 

make the RSUET(max, Ω) operational for large-scale cases. 

 The tests of the RSUET(min, Ω) all utilise the threshold condition (7) for each m=1, 2,..., 

M, i.e.          : ; : ; min :ms m m ms m m m ms mc s R c s R c s R        x ς x   . We shall 

refer to this setup as the RSUET(min, ·min) in the remainder of the paper.  

 The Column generation phase was thus based on single shortest path searches (see 

section 3.1). The implementation allowed the evaluation of two approaches in the Restricted 

master problem phase. One utilised the cost transformation functions introduced in Rasmussen 

et al. (2014b) (i.e. allows MNL and Path Size Logit (PSL) choice models) to identify an 

auxiliary solution using the pairwise path-swapping strategy described in Carey and Ge (2012) 

(referred to as the Path Swap variant). See Rasmussen et al. (2014b) for more information on 
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the integration of the path-swapping strategy and the cost transformation functions. The second 

approach identified the auxiliary solution by directly using the closed-form MNL or PSL 

choice probability expressions (referred to as the Inner Logit variant).  

 The implementation facilitated the use of the method of successive weighted averages for 

the step-size (MSWA, Lin et al., 2009). While being pre-defined, the MSWA allows giving 

more weight to auxiliary flow patterns found in later iterations, defining the step-size γn at 

iteration n as:  

 
1 2 ...

d

n d d d

n

n
 

  
  (8) 

where d≥0 is a real number. The Threshold condition phase was conducted as outlined in 

section 3.3 using the threshold defined by (7). 

4.3 EVALUATION CRITERIA 

 The MNL and PSL RSUET(min, ·min) solution algorithms were evaluated in various 

ways. Firstly, convergence was evaluated using the two-part convergence measure proposed in 

Rasmussen et al. (2014b), consisting of a part measuring the convergence to satisfy the 

underlying choice model among the used routes and a part measuring the convergence to fulfil 

the criteria on unused routes: 
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 It is important to note that the two gap-measures proposed above have been developed 

solely for closed-form logit-type choice models in the RSUE- and RSUET-model and can thus 

not be used to evaluate convergence of the link-based MNP SUE and mixed MNP SUE 
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solution algorithms. There is not an equivalent consistent measure available for such 

algorithms, and most applications evaluate the convergence by using ‘stability’ measures. 

These measures do not evaluate the convergence to equilibrium directly, but rather the stability 

in solutions from iteration to iteration. One such measure is the link flow stability, weighed by 

flow and length: 
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Secondly, it is also important to evaluate whether the different model setups generate 

route choice sets of reasonable sizes containing relevant routes leaving out non-sensible routes. 

We evaluated this by analysing the development of the choice set size and the ability to 

reproduce real-life observed route choices collected in the network. The latter is evaluated 

through a coverage measure, capturing the share of GPS observations for which the observed 

route is, at a certain overlap threshold, to be found among the routes in the corresponding 

generated choice set. The overlap between any observed route rRobs and any generated route 

s R   can be computed as (Ramming, 2002): 
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where Lrs is the sum of length of overlapping elements between the observed path r and the 

generated path s. The overlap measure (12) can be computed for each generated path s for 

observation r, and let max{ }rO  denote the highest overlap among the paths generated for 

observation r. Then the coverage using an overlap-threshold of λ (e.g. 80%) can be computed 

as (Ramming, 2002): 
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 (13) 

where I(·) is an indicator equal to 1 when the criteria is fulfilled and zero if not.  

 Combining the development in the choice set size and coverage, an efficient algorithm 

should generate a few routes inducing a high coverage level within the first few iterations. The 
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size of the choice sets should then stabilise (at a small size), indicating that all relevant routes 

have been generated. Bekhor and Prato (2009) sought to combine these two components by 

proposing an efficiency index measure. This accounts for both the behavioural consistency 

(coverage) and computational efficiency (choice set size). The measure thus supplements the 

two-part analysis above, and the efficiency index (EI) of an algorithm can be computed as: 

   ,,
max{ }
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  (14) 

where ,rel rR  is the number of relevant routes of observation r and rN  is the number of used 

routes for the OD-pair corresponding to observation r. The definition of the number of relevant 

routes is difficult to specify in real-life large-scale networks, but this study used , 2rel rR  for all 

observations as this was also used in Bekhor and Prato (2009). 

 1,169 counts were available of observed flow on links within the case-study area. We 

used these to analyse the realism of the flow distribution generated by the different algorithm 

variants.  

 Finally, the computational burden of the algorithms should also be evaluated. Other 

studies have found that the computational efforts required per iteration may vary greatly across 

different algorithm specifications and choice models (e.g., Rasmussen et al., 2014b). It is 

therefore important to not only evaluate the convergence as a function of the number of 

iterations, but to also consider the computational burden per iteration when evaluating the 

performance of an algorithm. We therefore also analysed the evolvement of the computation 

time per iteration across the algorithm variants and reported convergence etc. as a function of 

computation time rather than iteration number.  
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4.4 SPECIFICATION OF CHOICE FUNCTION AND PARAMETERS 

The model was implemented as a multi-class model that allows distinguishing between 

different trip purposes and vehicle classes (categories). The utility (cost) function considered 

several variables, and the cost of alternative r on OD movement m was specified as: 

 , , , , ,( ) ( ) ( )mr FreeTT m FreeTT mr CongTT m CongTT mr l m mr mrc t t l         x x x   (15) 

where ,FreeTT m , ,CongTT m  and ,l m  are the respective parameters associated with the free-flow 

travel time, congestion travel time and driving distance for the category associated with OD 

movement m. The distributed error term mr  expresses unobserved components and perception 

errors. The time-variables are measured in minutes, whereas all variables associated with 

length are measured in kilometres. 

 For the link-based MNP SUE and mixed MNP SUE, the error-term and (relevant only for 

the mixed MNP SUE) parameters associated to travel time were simulated from the gamma 

and the log-normal distribution, respectively. The parameters were simulated at OD-level to 

account for taste heterogeneity across individuals, whereas the error-term was simulated at link 

level per OD-pair. The mean of the error-term was zero, and the variance specified as 

proportional to the mean cost (using scale parameter βmε) to ensure consistent aggregation from 

link- to path-level (see Nielsen and Frederiksen, 2006). 

 The choice function consisted of an additional term for the PSL RSUET(min, ·min)-

application, seeking to account for the effect of path overlapping. The term  , lnPS m mrPS   

was added to the cost function (15), where ,PS m  was a non-positive OD-specific parameter. 

mrPS  was defined as proposed by Ben-Akiva and Bierlaire (1999): 
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where la and Lmr are measures of impedance on link a and on route r on OD movement m, and 

can either be measured as distance or cost (la=ta(f) and Lmr=cmr(x) . Distance was used as a 

measure of impedance in the present application. 
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 The parameter-values used were transferred directly from the multi-class link-based 

mixed MNP SUE model to be applied in the Danish National Model. No re-calibration was 

done to fit these to each of the RSUET solution algorithms tested, as the issue of parameter 

calibration and how this might be done in a consistent way for the RSUET framework is 

beyond the scope of this present work2. The multi-class assignment consisted of 19 user 

classes, and the parameters associated with each of these can be found in appendix 1.  

 Neither the parameters nor the error-terms are simulated in the RSUET(min, ·min) 

application. This not only ‘removes’ the need for simulations, but also requires less parameters, 

as variances do not have to be specified. However, there was a need to specify the scale 

parameter θm, the threshold values m as well as the algorithm step-size parameter d. The path-

size parameter PS also needed to be specified when applying the PSL choice model. The 

selection of the parameters is a multidimensional optimisation problem, as e.g. the choice of 

the scale parameter may influence the optimal value of d. The case study applied a relative 

threshold value specifying that, for each OD-pair, no used route may be more than 20% more 

costly than the least costly used route (i.e. m==1.2 for all m=1, 2, …, M). This value was not 

determined by addressing the multidimensional optimisation problem, but rather by using 

available data on observed path choices (section 5.1.1). Accordingly, we shall in the remainder 

of the paper refer to the RSUET(min, ·min) as RSUET(min, 1.2·min). The study evaluated 

different values of the scale parameter θm and d, as shall be presented in section 5.2-5.3. The 

tests applying the PSL choice model used , 3PS m PS     for all m=1, 2,..., M. This value was 

adopted from Rasmussen et al. (2014b), who tested different values. 

 We only allowed to remove routes from a choice set if it contained at least minN =2 

routes. Subsequently, we verified that this did not give rise to unreasonably large fluctuations 

in flows when removing a route for any OD movement. In order for the flows to stabilise in the 

initial iterations before removing any routes, we additionally only allowed routes to be 

removed from iteration Kmin=15 onwards. 

  

                                                 
2 For a discussion on calibration issues for the RSUE, see Watling et al. (2014). 
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5 RESULTS 

Several variants of the implemented algorithm were tested on different configurations of the 

network demand. We found that performing 100 iterations was sufficient to induce Used
nRel.gap  

as well as Unused
nRel.gap  to reach a value below 1.3·10-3 and 1.0·10-12, respectively, for all 

applications. The analyses have been performed using both the Path Swap as well as the Inner 

Logit for the determination of the auxiliary flow solution in the Restricted master problem 

phase of the solution algorithm. In the paper, we only report the results obtained from the Inner 

Logit. Both approaches showed the same overall patterns, however with faster convergence of 

the variant for which the results are reported (as also found in Rasmussen et al. (2014b)).  

 The three parameters τ, d and θ are treated in a subsequent manner in the first three 

subsections. Section 5.1 sets off with the specification of the threshold based on observed data 

rather than based on the analysis of several alternative values. Section 5.2 addresses the 

specification of the step-size parameter, based on an analysis of the convergence patterns. The 

specification of the scale parameter was done based on several evaluation criteria, including the 

coverage, choice set size, efficiency index, link flow stability as well as the ability to reproduce 

observed link counts (section 5.3). Subsequently follows an analysis of the effect of correcting 

for path overlapping, and the section is ended by an analysis of the robustness towards the 

congestion level in the network.  

5.1 THRESHOLD 

5.1.1 DETERMINATION OF THRESHOLD FROM REVEALED CHOICES 

The threshold specifies the maximum route cost, relative to the cheapest used path, on routes in 

order for them to be considered attractive by travellers. As mentioned, the threshold value is 

not determined from an optimisation routine, but rather from insights learned from analysing 

the choice of non-optimal paths in real-life observed route choices. Moreover, the threshold 

value was defined based on a comparison between costs on observed paths and costs on the 

corresponding minimum cost path. Figure 3 illustrates the cumulative share of observations as 

a function of the ratio between the cost on the observed path (path obtained from GPS data) 

and the cost on the minimum cost path between the corresponding locations. The observed 

paths were constituted by the 16,618 routes obtained from the GPS data. The cheapest path was 
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found by, for each GPS trip, performing a shortest-path search in the congested network, 

between the origin and destination of the corresponding GPS trip. It is e.g. seen that 71% of the 

observed paths were less than 5% longer than the corresponding optimal path.  

 

Figure 3 – Cumulative share of observations as a function of the ratio between the cost on the observed path r and 

the cost on the corresponding minimum cost path cr, min (x) 

 The distribution of the ‘non-optimality’ of the observed routes is assumed to be 

representative of how (relatively) expensive paths have to be in order for the travellers not to 

consider and use them. We specified the threshold based on this: using a 95% interval induces 

a choice of τ=1.2 (i.e. the relative cost on 95% of all observed paths is within this threshold), 

which has then been used in the remainder of the paper. 

5.1.2 EXAMPLE OF ROUTE EXCLUSION, THRESHOLD CONDITION 

1,989 unique routes were removed by the threshold condition when using =1.2, d=4 and the 

MNL choice model with θ=0.2. Note, however, that the same unique path may have been 

generated and subsequently excluded several times during the iterations of the solution 

algorithm. This section presents an example of an OD movement (commercial business trip 

undertaken in van), for which a previously generated route was removed by the threshold 

condition at equilibrium. 
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 Figure 4 illustrates the four unique routes generated (each of these has been the most 

attractive at some iteration), and Table 1 reports the corresponding equilibrium cost 

components, generalised cost and route flow share on each of these. All 4 routes were however 

not included in the equilibrated choice set, as flow was only distributed among paths 1, 2 and 

4. Comparing the generalised costs, we see that Path 3 is considerably more expensive than the 

others. Accordingly, since this path is 32% more expensive than the cheapest path, the 

threshold condition removed it from the final choice set. We have verified that the flow 

distribution among the three remaining paths constitutes a MNL flow solution, and that the 

relative costs of these are below the threshold. 

 
Figure 4 – Example of excluded route. 4 paths generated, but 3 utilised at convergence. MNL RSUET(min, 

1.2·min), Zealand application 
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Table 1 – Specification of cost components, generalised costs, relative costs as well as flows at equilibrium. MNL 

RSUET(min, 1.2·min), Zealand application. l1r, tFreeTT, 1r and tCongTT, 1r refer to the length, free-flow travel 

time and congested travel time of route r, respectively. c1r(x) and c1,min(x) refer to the cost on route r and 

the minimum cost across the used routes, respectively 

Path Category ID l1r [km] tFreeTT, 1r(x) [min] tCongTT, 1r(x) [min] c1r(x) c1r(x)/c1,min(x) Flow [%] 

1 6 13.80 12.85 16.39 81.40 1.01 32.23
2 6 13.61 13.42 15.40 81.82 1.02 29.64
3 6 18.02 17.09 20.24 106.07 1.32 -
4 6 14.43 13.64 16.44 80.56 1.00 38.13

 

5.2 STEP-SIZE STRATEGY 

 The step-size parameter d specifies the ‘trust’ in the auxiliary solution and may thus 

influence the convergence speed (Rasmussen et al., 2014b). Posing a higher trust in the 

auxiliary solution may also lead to higher fluctuations in the path-flows between iterations, 

which may possibly cause additional/other paths to be attractive. The choice of d may thus 

influence not only the convergence speed, but also the solution in terms of the composition of 

the choice sets. The converged solutions should however all be RSUET solutions.  

 If the model parameters τ and θ are kept constant (τ=1.2, θ=0.2), the convergence 

measures can be directly compared across d-values for the RSUET and RSUE. Figure 5 and 

Figure 6 illustrate the convergence pattern of the MNL RSUET(min, 1.2·min) for different 

step-size strategies.  
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Figure 5 – Relative gap measure for convergence of choice set composition as function of computation time, 

Zealand application. MNL RSUET(min, 1.2·min) for various values of step-size parameter d as well as the 

MNL RSUE(min) with d=4. All with θ=0.2. Notice the log-scale on the vertical axis 
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Figure 6 – Relative gap measure for convergence of flow distribution among routes in the choice set as a function 

of computation time, Zealand application. MNL RSUET(min, 1.2·min) for various values of step-size 

parameter d as well as the MNL RSUET(min) with d=4. All with θ=0.2. Notice the log-scale on the vertical 

axis 

 The choice set composition converged fast for all step-sizes, however with d=0 (MSA) 

being somewhat slower. Also the distribution of the flow among the paths in the choice set 

converged to a stable low level of approximately 1.0-3.5·10-7, except for low values of d (d=0 

and d=2) which were far from reaching this level at termination. Using d=4 caused the fastest 

convergence, as the final choice sets were generated within less than 30 minutes and the flow 

distribution converged within 35-40 minutes of calculation time. Consequently, the analyses 

presented in the remainder of the paper have been done using d=4. 

 We also evaluated the corresponding MNL RSUE(min) formulations. The convergence 

pattern of the RSUET(min, 1.2·min) was identical to that of the corresponding RSUE(min) 

application during the first 15 iterations. This seems reasonable since Kmin=15. From iteration 
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15 onwards the convergence pattern was also very similar, converging to almost identical 

values of the relative gap measures. This is because only a very small share of the routes were 

removed by the threshold condition (e.g. 1,989 routes across 1,621,201 OD-pairs in the case of 

d=4). Consequently, in Figure 5 and Figure 6 we do not report the results for other applications 

of the RSUE(min) than the one using d=4. 

 The relative gap associated with the distribution of flow among paths did not seem to 

converge to zero, but rather stabilised at approximately 1-3.5·10-7. This number is very low, 

and we do not see this stabilization to a non-zero value as an indication of the algorithm not 

converging, but rather an issue arising due to the limitations of the computer used; the relative 

gap is computed using exponential functions of the costs, which causes very small deviations 

to be amplified into large numbers. We performed a disaggregate analysis of the changes in 

flow and costs on routes between iterations when d=4. This showed that the average/maximum 

change in absolute cost and flow on the paths across all OD movements is a very low  

2.9·10-12/2.3·10-10 for cost and 6.2·10-12/1.0·10-9 for flow. These numbers are at the limit of the 

C# software, and we expect the non-zero gap measure to be a consequence hereof. 

5.3 SCALE PARAMETER 

The scale parameter reflects the dispersion in the perception of costs among drivers. We note 

that a low value reflects large variation in the perception error of drivers (with complete 

‘random’ allocation in the extreme case of θ0) and a high value reflects small variation in the 

perception error of drivers (with the limit of DUE when θ∞). Several different values of the 

scale parameter were tested, each application using the same value across all OD movements, 

i.e. θm=θ for m=1,2,…,M. The relative gap measures were used to verify that all tests 

converged within reasonable computation time. The convergence measures can however not be 

compared across applications, as the scale parameter influences the relative gap measure. We 

therefore performed a series of alternative analyses to evaluate the performance of the solution 

algorithm for different values of the scale parameter. This also facilitated the comparison to the 

link-based MNP SUE and mixed MNP SUE solution methods.  

 1,169 observed link counts were available, and these were distributed throughout the 

case-study area. Figure 7 reports coefficient of determination (R2) between the modelled and 

observed link counts. In general, very high correspondence was observed (all R2≥0. 942), 
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demonstrating that the RSUE/RSUET applications are successful in distributing the flow in a 

way that matches the observed counts. Only slight differences are seen between corresponding 

RSUE/RSUET applications, and the best performance was obtained when using θ=0.2. While 

the mixed MNP SUE performed better than the MNP SUE, it is prevailing that both MNP SUE 

applications performed considerably worse than all RSUE/RSUET applications in reproducing 

link counts.  

 

Figure 7 – Correspondence between modelled and observed link flows for various RSUE and RSUET 

configurations as well as the MNP SUE and mixed MNP SUE. Iteration 100, Zealand application 
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The analysis above showed good performance of the RSUE/RSUET on an aggregate level, by 

showing that these distribute flow in a way that reproduces link counts accurately. Moving to a 

disaggregate level, the solution algorithms should also be able to reproduce rational real-life 

route choices. We evaluated their ability to do so by using the 16,618 observed route choices 

collected via GPS, under the hypothesis that the observed routes should be represented in the 

corresponding choice sets generated. The coverage measure captures this, and Figure 8 reports 

the coverage measure as a function of the overlap threshold λ. We see decreasing coverage 

with increasing λ, as expected. Also, it can be seen that the ‘relative’ performance of the 

different θ values was somewhat the same across λ values. 

 

Figure 8 – Coverage as function of overlap threshold λ for various scale parameters in  

MNL RSUET(min, 1.2·min), iteration 100. Zealand application 

 Table 2 reports various characteristics of the solution generated, including the coverage 

obtained at iterations 25 and 100 when using a 80% overlap threshold. In general, high 

coverage levels were produced for all θ. It can be seen that adding the threshold on the relative 

costs does not seem to reduce the coverage for any of the chosen θ. This indicates that the 

paths removed by the threshold condition are in general non-relevant. Furthermore, the 

coverage seems to increase with increasing scale parameter. This increase is probably related to 
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the larger fluctuations in flow in the initial iterations caused by the larger scale parameter; 

more weight is put on differences in costs (closer to DUE), leading to more ‘extreme’ auxiliary 

flows and thereby also larger fluctuations. These fluctuations cause more routes to be generated 

(seen through larger average choice set sizes) but also more routes to violate the threshold at 

equilibrium (and thus be removed, see Table 2). The number of paths removed were however 

at a very low level, considering that the network contains 1.6 million OD-pairs. 

Table 2 – Coverage, choice set size, efficiency index and number of routes removed (when relevant) for various 

scale parameters in MNL RSUET(min, 1.2·min) and the MNL RSUE(min). The relevant measures are also 

reported for the MNP SUE and the mixed MNP SUE. Zealand application 

Coverage, λ=0.8 Choice set size 
Efficiency index Excluded paths

Ite 25 Ite 100 Min. Avg. Max. 

θ=0.05 
RSUE 0.8431 0.8431 1 2.364 10 0.9859 -

RSUET 0.8431 0.8431 1 2.367 10 0.9859 1165

θ=0.1 
RSUE 0.8452 0.8452 1 2.484 10 0.9733 -

RSUET 0.8452 0.8452 1 2.484 10 0.9734 1180

θ=0.2 
RSUE 0.8487 0.8487 1 2.696 13 0.9541 -

RSUET 0.8487 0.8487 1 2.695 12 0.9543 1989

θ=0.5 
RSUE 0.8535 0.8535 1 2.968 14 0.9335 -

RSUET 0.8535 0.8535 1 2.967 13 0.9338 3784

θ=1.0 
RSUE 0.8548 0.8548 1 3.059 13 0.9162 -

RSUET 0.8548 0.8548 1 3.057 13 0.9165 4640

MNP SUE 0.8959 0.8959 1 14.894 100 0.6540 -

mixed MNP SUE 0.8959  0.8959 1 25.365 100 0.5460 -

 

 The MNP SUE and mixed MNP SUE produced coverage levels which were considerably 

better than those of the RSUE and RSUET applications. This was however at the cost of 

generating large choice sets, which continued to grow without any clear tendency towards 

stabilisation. An average size of 37.0 routes was seen at iteration 200 for the mixed MNP SUE. 

The RSUE and RSUET on the other hand produce choice sets having a very computationally 

reasonable size, and which are equilibrated. The equilibrated choice sets were generated within 

a few iterations, which is also indicated by non-changing coverage from iteration 25 to 

iteration 100 (Table 2). The flow distribution also converged within a few iterations, 

highlighting that there is no need to perform many iterations to obtain an equilibrated 

RSUE/RSUET solution. 
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 An efficient solution algorithm should produce a high coverage level while generating 

choice sets which are computationally attractive by containing only (a few) relevant routes. 

The efficiency index (14) captures this, and the RSUE/RSUET solution algorithms reached 

efficiency indexes ranging from 91.7% to 98.6%. The index for the RSUET is slightly better 

than the index generated by the corresponding RSUE formulations. This is due to the (slightly) 

smaller choice sets. The RSUE/RSUET solution algorithms generated significantly higher 

efficiency indeces than the MNP SUE and mixed MNP SUE. This highlights the weakness of 

the MNP SUE approaches, namely that they generated their high coverage levels at the cost of 

generating large choice sets. 

 The convergence pattern cannot be directly compared across θ-values, as mentioned 

earlier. In order to facilitate comparisons, the measures reported in Table 2 were supplemented 

by analyses of the link flow stability and the ability to reproduce observed link counts. This 

also facilitated the comparison to the MNP SUE and the mixed MNP SUE. It is however 

important to note that stability in link flows does not necessarily induce that an equilibrated 

solution has been found.  

 Figure 9 illustrates the link flow stability across iterations. We see very fast stabilisation 

in the link flows for all RSUE/RSUET applications. The effect of adding the threshold can 

clearly be seen, especially when θ≤0.2, through a destabilisation of link flows at iteration 15 

(~20min of computation time). Using θ=0.1 or θ=0.2 induces the best link flow stability. The 

stability of the MNP SUE and the mixed MNP SUE was considerably lower, indicating that 

convergence was not yet reached at iteration 100. This was also suggested by continuously 

increasing choice sets and is furthermore supported by a maximum relative deviation in link 

flow between iterations 99 and 100 of a very high 18.8%. This value was considerably lower 

for all the RSUET(min, 1.2·min) applications, e.g. 2.14·10-5 % when θ=0.2. 
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Figure 9 – Link flow stability across iterations, Zealand application. Notice the log-scale 

 Summarising, all tested values of θ produced good results for all evaluation criteria used. 

The best link count correspondence was however seen when using θ=0.2, and the analyses in 

the remainder of the paper have adopted this value.  

 We identified an issue related to the software implementation when performing the tests 

of alternative scale parameters on a previous version of the software. Using a large θ for OD-

pairs with long costly routes, e.g. lorries travelling across the study area, caused the software to 

- erroneously - evaluate the associated exponential functions used in the Inner Logit flow 

allocation to a value of zero. I.e. the computer evaluates exp(-θ·cmr) as 0 if the product θ·cmr is 

large. Furthermore, the software evaluates the expression exp(θ·cmr) as NaN in the computation 

of the gap measures. In practice, we found this error to occur when θ·cmr was larger than 

approximately 750, indicating that this is the approximate limit of the C# software. In a new 

version of the software we resolved these issues by i) performing an all-or-nothing assignment 
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to the shortest path in the initialisation of the algorithm (Step 0, iteration 1), and ii) subtracting 

a specific constant from the costs on all used paths when doing the Inner Logit assignment and 

the computation of the convergence measure. The all-or-nothing assignment avoids the 

evaluation of the exponential function. The subtraction ‘moves’ the costs to a range for which 

the exponential function can evaluate the values. The absolute differences in cost remain the 

same, thereby inducing no influence on neither the auxiliary solution nor the convergence 

measure. We defined the specific constant to subtract for each OD-pair to be the cost on the 

cheapest used path, enabling the computations to not fail before θ·(cmr - cm, min) increase above 

approximately 750. An alternative definition of the constant would be to define it as -750-θ· 

cm,min, enabling the computations to not fail before θ·(cmr - cm, min) increase above approximately 

1,500.  

5.4 PATH OVERLAP CORRECTION 

The MNL choice model fails to account for path overlapping. The study has also applied the 

PSL choice model to investigate the impact of accounting for this. This involved the 

specification of the parameter associated to the path-size correction factor. The identification of 

the optimal parameter value is not a one-dimensional problem, as e.g. the choice of a path-size 

parameter may influence the optimal value of θ and vice versa. The study did not seek to solve 

the resulting multidimensional optimisation problem. Rather, the PSL RSUET(min, 1.2·min) 

was applied for both d=0 and d=4, using θ=0.2 and , 3PS m PS    . This parameter setting is 

assumed to be reasonable; section 5.3 found good performance when using θ=0.2 in the 

corresponding MNL RSUET and Rasmussen et al. (2014b) tested different values of PS  for 

the PSL RSUE(min) on the same network (also using θ=0.2, but with d=2) and found best 

performance when 3PS   .   

Equilibrated solutions were found, with convergence patterns almost identical to the pattern of 

the corresponding MNL application (and therefore not reported here). The same choice sets 

were generated across the choice models for almost all OD-pairs. This is supported by a 

difference in average choice set size of 0.001 and 0.002 routes when comparing corresponding 

applications across choice models for d=0 and d=4, respectively. The high similarity of choice 

sets seems reasonable, as the same path generation technique was used in the solution 



 

 

282 

algorithm for the two choice models (deterministic shortest path search). The choice set 

composition however varied in a few cases. This was a consequence of the different flow 

distribution across the two choice models (due to the correction for path overlapping), which 

(in some cases) caused other routes to be attractive.  

 The similarity of the choice sets also led to almost identical coverage levels. Accounting 

for path overlapping does thus not improve coverage, but we however expect the distribution 

of flow among routes in the choice sets to be more behaviourally realistic for the PSL 

applications. Accordingly, while it is important to evaluate coverage (i.e. choice set 

composition), the evaluation of the distribution of flow among used paths is also important, as 

this may be more realistic for some choice models than others. 

 Figure 10 reports the computation time per iteration of the application of the MNL and 

PSL RSUET(min, 1.2·min) solution algorithms3. We see increasing computation time during 

the first iterations of the MNL RSUET(min, 1.2·min) applications. This seems reasonable and 

can be attributed to the path-based approach: The choice sets were generated within the first 

iterations, and storing an increasing number of paths in-memory and (re)distributing flow 

between these requires increasing memory and computational effort. The final choice sets 

were, generally, generated within the first 5-10 iterations when d=0 and d=4, and it is thus 

reasonable that we from this point on see stable computation times per iteration.  

 Quite different computation times in the initial iterations between the MNL and PSL 

applications were seen; the computation time of the MNL was strictly increasing until a certain 

level, whereas the computation time of the PSL increased rapidly in the initial iterations and 

then reduced to the level of the corresponding MNL application. This is directly linked to the 

computation of the path-size correction factors. Since these were based on overlap in length, 

they only need to be recomputed when a route is added to or removed from the choice set. The 

choice sets were formed in the initial iterations, and the path-size correction term thus had to be 

computed for many paths in these (the choice set changed for many OD movements and the 

correction terms had to be recomputed for all routes in each of these choice sets). This is 

                                                 
3 The software allows writing intermediate output such as link and path flows/costs etc. per iteration. This is very 
time consuming, and to facilitate the best comparison possible we have disabled the writing of all output except 
the convergence log. The convergence log is not written while iterating but takes approximately ½ second to write 
upon termination (i.e. the convergence log is written once per application).  
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computationally expensive (especially as the number of routes in the choice sets grows) and 

explains the steep increase in computation time in the initial iterations. After a few iterations 

(iterations 4 and 6 for d=0 and d=4, respectively) new routes were generated for fewer OD 

movements, and fewer path-size correction terms thus had to be (re)computed. This reduced 

the computational effort. After the final choice sets were (more or less) generated at iteration 

11, no further recalculation of path-size correction terms were needed. Therefore the 

computation time reduced to that of the corresponding MNL formulation.  

 
Figure 10 – Computation time per iterations for the MNL as well as PSL RSUET(min, 1.2·min) with d=0 and d=4. 

Zealand application 
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5.5 STABILITY TO CONGESTION LEVEL 

The analyses above showed that the tested variants of the solution algorithm provide fast 

convergence to a stable solution which fulfils the RSUET(min, 1.2·min) conditions. However, 

good performance in the Zealand application does not guarantee good performance when 

applied to other case studies. One of the typical major challenges for solution algorithms is to 

also provide nice convergence patterns in high congestion real-life cases. We have applied the 

tested variant of the proposed solution algorithm with d=4 to a variety of scaled versions of the 

original demand matrices (the scale-factors tested are 1.25, 1.5, 1.75 and 2.0). This was done to 

test the robustness towards the general congestion level in the network. Figure 11 illustrates the 

volume-capacity ratio in the network links for the different demand levels. 

 
Figure 11 – Network congestion at various demand levels. Cumulative share of links as function of volume to 

capacity ratio, Zealand application 
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5.5.1 CONVERGENCE 

Figure 12 and Figure 13 report the convergence measures for varying demand when 

performing 100 iterations. There was a clear tendency for slower convergence as the demand 

increased, both in terms of number of iterations needed as well as calculation time. However, a 

nice convergence pattern was seen for all the tested levels of demand. The travel times in the 

network fluctuated more in the initial iterations due to the larger demand which caused the 

choice set composition to require more iterations to converge and larger choice sets to be 

generated (as shall be highlighted in section 5.5.2). The higher fluctuations and travel time 

differences in the network also caused the distribution of flow among paths to require more 

iterations to converge for increasing demand levels, but even the highest congestion case 

(demand scale-factor 2.0) converged nicely once the final choice sets were generated. Longer 

calculation time to converge for increasing demand level is however not only due to the need 

for more iterations. The calculation time per iteration also increased, due to the larger choice 

sets and hence more paths to store in memory and assign traffic between. Consequently, the 

average calculation time per iteration was approximately 90/105/130/145/180 seconds for 

scale-parameter 1.0/1.25/1.5/1.75/2.0, respectively. 
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Figure 12 – Development of relative gap measuring convergence of the choice sets for various values of the factor 

scaling the demand, MNL RSUET(min, 1.2·min) with d=4, Zealand application 
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Figure 13 – Development of relative gap measuring convergence of the distribution of flow between paths for 

various ‘scaled’ demands, MNL RSUET(min, 1.2·min) with d=4, Zealand application 

5.5.2 CHOICE SET SIZE, ROUTE EXCLUSION AND COST DISTRIBUTION 

In the above, we found that more iterations were required for the choice set composition to 

converge when increasing the demand. This indicates that more routes – larger choice sets – 

were probably generated as the demand increased. Figure 14 verifies this. The average choice 

set size grew larger and required more iterations to stabilise when increasing the demand, but 

after iteration 13-30 (depending on demand level) no major changes of the average and 

maximum choice set size occurred. Furthermore, it can be seen that the choice sets had a very 

reasonable and computationally attractive size across all demand levels. For some movements 

only one route was generated, even for a very high demand (minimum choice set size was 

equal to 1 for all demand-levels, and is thus not reported in Figure 14). This also seems 

justifiable, since for some movements, such as e.g. neighbouring zones in rural areas, only one 

alternative may be reasonable, even at a high congestion level. We additionally note that even a 
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doubling of the demand does not cause congestion on some (primarily rural) roads, as 

suggested by Figure 11. 

 
Figure 14 – Choice set characteristics for various values of the factor scaling the demand, MNL RSUET(min, 

1.2·min) with d=4, Zealand application 

 Only a few routes violated the threshold condition by being more than 20% more costly 

than the cheapest path in the ‘unscaled’ Zealand application. Step 5 of the solution algorithm 

did thus not remove many routes4 - at termination only 1,989 unique routes had been generated 

and removed again from the choice sets5. The corresponding number was 10,744, 34,519, 

85,478 and 160,192 routes when the demand scale factor was 1.25, 1.5, 1.75 and 2.0, 

respectively. The threshold condition thus removed more paths as the network congestion 

                                                 
4 Note on implementation: Paths to be removed are not discarded/flushed from memory but rather flagged as 
‘inactive’. This is done because these might again become attractive in a later iteration, and ‘reactivating’ an 
inactive path requires far less computational effort than assigning a new route to memory. 
5 The same unique route may however have been introduced and subsequently removed again several times as the 
algorithm progressed. 
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increased, and one route was, on average, removed for each tenth OD movement when using a 

scale factor of 2.0. At this demand level the maximum number of unique paths removed for a 

single OD movement was 4 (this OD movement had 9 used paths in the resulting choice set at 

equilibrium). The increase in the number of paths removed for increasing demand seems 

reasonable, as link travel times fluctuate much more and thereby the route costs more ‘easily’ 

violate the threshold condition. The larger fluctuations in link travel times occur due to (i) the 

larger demand on OD-level, causing more flow to be reassigned in each iteration, and (ii) 

higher sensitivity to flow changes in the travel time functions when the general flow level is 

higher. We therefore also expect a larger variation on the relative costs among the routes left in 

the choice set at equilibrium. This is verified by Figure 15. From this we for example see that 

7% of the routes were more than 4% more costly than the corresponding cheapest path in the 

‘unscaled’ case, whereas it was 27% of the routes in the case where the scale-factor was equal 

to 2.0. 

 
Figure 15 – Distribution of relative costs at convergence (iteration 100). Share of routes as a function of relative 

cost to the cheapest route in the corresponding choice set. MNL RSUET(min, 1.2·min) d=4 for varying 

values of the factor scaling the original demand, Zealand application 
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6 DISCUSSION AND CONCLUSIONS 

The paper tackles the challenge of obtaining equilibrated RUM flow solutions among choice 

sets which do not leave attractive paths unused and contain only attractive paths. The RSUE 

only partially obtains this; no attractive paths are left unused, but some unattractive paths may 

be used at equilibrium. We overcome this problem by proposing the RSUET (RSUE with 

Threshold), as an extension to the RSUE. The extension adds a behaviourally realistic 

threshold condition that must be fulfilled by the costs on used routes. This ensures that only 

attractive paths fulfilling the cost threshold are kept in the choice set and thus are assigned 

traffic.  

 We have proposed a corresponding RSUET solution algorithm and validated several 

variants of this by application to the large-scale Zealand network. Well-behaved and extremely 

fast convergence patterns were seen to equilibrated solutions satisfying the underlying 

conditions (across different scale parameters, step-sizes, and congestion levels). Comparisons 

to observed routes and observed link flows verified that the composition of the choice sets and 

the distribution of flow are very reasonable. We investigated the effect of adding the threshold 

under different conditions and found that the threshold condition did not cause any of the 

observed paths to be removed, which seems reasonable. We also found that the importance of 

the threshold increased as congestion increased. A comparison to two commonly adopted 

simulation-based SUE algorithms clearly highlighted the benefits of the RSUE/RSUET by 

showing that the SUE algorithms (i) generated choice sets which continued to grow in size 

without showing signs of stabilisation, and (ii) did not stabilise in link flows nearly as fast as 

the RSUE/RSUET, indicating much slower convergence. 

 Numerous different specifications of the threshold can be formulated, but we focused on 

a formulation which specifies the threshold based on the cost of the least costly used route(s). 

The rationale is that there must be a limit to how large detours travellers find reasonable. The 

RSUET model thereby provides a very behaviourally realistic interpretation of the mechanism 

which distinguishes attractive and non-attractive paths. Many other models do not provide such 

a plausible interpretation, e.g. the models based on random walk with loops (e.g., Fosgerau et 
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al., 2013) or simulation-based models, where the draws may induce the use of highly 

unattractive paths. 

 The application focused on the RSUET(min, Ω) and did not pursue to apply the 

RSUET(max, Ω). The addition of the threshold condition allows the user to ensure a 

reasonable distribution of the costs on routes that are used. However, the solution algorithm to 

the max-formulation still needs some additional development to enable large-scale 

applications. Specifically, if the threshold is not specified very ‘tight’, then the max-

formulation will typically need to enumerate an unreasonably large number of k-shortest paths 

to fulfil the max-criterion. The difficulty arises, since numerous alternatives typically exist that 

are small local detours to the shortest path. All these have to be enumerated before any other 

relevant and distinct alternative is identified. This issue is highlighted by a search for the 

10,000 shortest paths between Rome and Copenhagen on the Transtools network (Rich et al., 

2009). These all turn out to be very minor deviations (detours, less than 2% deviation in cost) 

to the single shortest path, whereas no distinct alternatives are identified. On the other hand, the 

RSUET(min,Ω) solution algorithm might have overlooked feasible and reasonable routes. 

These are routes which have not been the minimum cost route at any iteration during the 

calculation, but are less costly than some used path at equilibrium. To solve this issue, one 

could seek to propose a RSUET(Φ, Ω) formulation which mediates between the 

RSUET(min,Ω) and the RSUET(max,Ω). This should be accompanied by a corresponding 

heuristic principle for choice set generation that fulfil the underlying conditions, while 

avoiding the use of a ‘greedy’ k-shortest path search routine.  

 We believe that the RSUET model framework and solution methods fit especially well in 

combination with disaggregate activity-based models. The activity-based models operate at an 

individual level, and the utility functions become individual-based. In the right integration, this 

removes the need to account for taste heterogeneity in the assignment model and, thereby, 

enables the application of the proposed RSUET solution methods. Not only this allows a rich 

and consistent specification of the utility function that can improve the behavioural realism 

significantly, but also the extremely fast convergence of the RSUET solution algorithm allows 

for low computation times in the integrated model framework. An additional benefit is the 

absence of stochasticity in the output of the model (which may have a major implication for 
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project appraisals) as simulation is avoided. We note that while the solution algorithm fits 

particularly well with individual-based approaches, they can also be used to approximate 

mixed logit models and, thereby, represent taste heterogeneity. This can be done by generating 

quantiles of the distribution of the preferences – e.g. of the value-of-time – and then consider 

each of these as separate user classes in the solution algorithm (parameters specified as mean 

value for the corresponding quantile). 

 In summary, we have proposed a model generic to the RSUE and have demonstrated that 

this modification supports an improvement of the behavioural realism in disaggregate large-

scale applications, especially for high-congestion cases. We proposed a corresponding generic 

solution algorithm and verified several variants of this in different parameter settings in a 

highly complex network. The algorithm converged extremely fast to an equilibrated solution 

fulfilling the underlying conditions, even in large-scale case studies and for high-demand cases. 
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7 APPENDIX I – ROUTE CHOICE PARAMETERS 

7.1 CATEGORIES 

Category ID Name Trip length Per car unit / type Max speed [km/h] 
1 Commute, education Short 1 / Car 130 
2 Business, business night Short 1 / Car 130 
3 Shopping Short 1 / Car 130 
4 Escort, leisure, other Short 1 / Car 130 
5 Vacation Short 1 / Car 130 
6 Business, commercial Short 1 / Van 130 
7 Other Short 1 / Van 130 
8 Truck Short 2 / Truck below 12 tonnes 80 
9 Truck +12 tonnes Short/Long 2 / Truck above 12 tonnes 80 

10 Truck with trailer Short/Long 2 / Truck with trailer 80 
18 Truck, gigaliner Short/Long 2 / Truck gigaliner 80 
11 Commute, education Long 1 / Car 130 
12 Business, business night Long 1 / Car 130 
14 Escort, shopping, leisure,other Long 1 / Car 130 
15 Vacation Long 1 / Car 130 
16 Business, commercial Long 1 / Van 130 
17 Other Long 1 / Van 130 
19 Freight Short 1 / Van 130 
20 Freight Long 1 / Van 130 

 

 

Category ID Application ,FreeTT m  ,CongTT m  ,l m  m  

μ σ2 μ σ2 μ  

1 

MNL/PSL RSUET(min,1.2·min) 1.692 1.947
 

0.870 

MNP SUE 1.692 1.947 0.870 0.010

mixed MNP SUE 1.692 0.655 1.947 0.670 0.870 0.010

2 

MNL/PSL RSUET(min,1.2·min) 2.587 4.028
 

0.900  

MNP SUE 2.587 4.028 0.900 0.010

mixed MNP SUE 2.587 0.582 4.028 0.638 0.900 0.010

3 

MNL/PSL RSUET(min,1.2·min) 0.978 1.693
 

0.870  

MNP SUE 0.978 1.693 0.870 0.010

mixed MNP SUE 0.978 0.423 1.693 0.496 0.870 0.010

4 

MNL/PSL RSUET(min,1.2·min) 1.087 1.970
 

0.870  

MNP SUE 1.087 1.970 0.870 0.010

mixed MNP SUE 1.087 0.470 1.970 0.551 0.870 0.010

5 

MNL/PSL RSUET(min,1.2·min) 1.293 2.544
 

0.870  

MNP SUE 1.293 2.544 0.870 0.010

mixed MNP SUE 1.293 0.559 2.544 0.655 0.870 0.010

6 
MNL/PSL RSUET(min,1.2·min) 3.270 5.573

 
1.090  

MNP SUE 3.270 5.573 1.090 0.010
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mixed MNP SUE 3.270 0.654 5.573 0.724 1.090 0.010

7 

MNL/PSL RSUET(min,1.2·min) 1.087 1.970
 

1.090  

MNP SUE 1.087 1.970 1.090 0.010

mixed MNP SUE 1.087 0.470 1.970 0.551 1.090 0.010

8 

MNL/PSL RSUET(min,1.2·min) 3.300 3.630
 

2.900  

MNP SUE 3.300 3.630 2.900 0.010

mixed MNP SUE 3.300 1.300 3.630 1.309 2.900 0.010

9 

MNL/PSL RSUET(min,1.2·min) 3.380 3.758
 

3.150  

MNP SUE 3.380 3.758 3.150 0.010

mixed MNP SUE 3.380 1.352 3.758 1.363 3.150 0.010

10 

MNL/PSL RSUET(min,1.2·min) 3.500 3.955
 

3.180  

MNP SUE 3.500 3.955 3.180 0.010

mixed MNP SUE 3.500 1.400 3.955 1.413 3.180 0.010

11 

MNL/PSL RSUET(min,1.2·min) 2.200 2.531
 

0.870  

MNP SUE 2.200 2.531 0.870 0.010

mixed MNP SUE 2.200 0.851 2.531 0.866 0.870 0.010

12 

MNL/PSL RSUET(min,1.2·min) 3.881 6.043
 

0.900  

MNP SUE 3.881 6.043 0.900 0.010

mixed MNP SUE 3.881 0.776 6.043 0.832 0.900 0.010

14 

MNL/PSL RSUET(min,1.2·min) 1.739 3.152  
 

0.870  

MNP SUE 1.739 3.152 0.870 0.010

mixed MNP SUE 1.739 0.751 3.152 0.833 0.870 0.010

15 

MNL/PSL RSUET(min,1.2·min) 1.185 2.234
 

0.870  

MNP SUE 1.185 2.234 0.870 0.010

mixed MNP SUE 1.185 0.819 2.234 0.907 0.870 0.010

16 

MNL/PSL RSUET(min,1.2·min) 4.905 8.360
 

1.090  

MNP SUE 4.905 8.360 1.090 0.010

mixed MNP SUE 4.905 0.981 8.360 1.051 1.090 0.010

17 

MNL/PSL RSUET(min,1.2·min) 1.739 3.152
 

1.090  

MNP SUE 1.739 3.152 1.090 0.010

mixed MNP SUE 1.739 0.500 3.152 0.581 1.090 0.010

18 

MNL/PSL RSUET(min,1.2·min) 3.600 4.068
 

3.400  

MNP SUE 3.600 4.068 3.400 0.010

mixed MNP SUE 3.600 1.440 4.068 1.453 3.400 0.010

19 

MNL/PSL RSUET(min,1.2·min) 3.270 5.573
 

1.090  

MNP SUE 3.270 5.573 1.090 0.010

mixed MNP SUE 3.270 0.654 5.573 0.724 1.090 0.010

20 

MNL/PSL RSUET(min,1.2·min) 4.905 8.360  
 

1.090  

MNP SUE 4.905 8.360 1.090 0.010

mixed MNP SUE 4.905 0.981 8.360 1.051 1.090 0.010
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APPENDIX 7: CASE STUDIES 

A7.1 NETWORK AND DEMAND 

All large-scale applications are based on data from the LTM (Rich et al., 2010). Rasmussen et 

al. (2014a) utilise the schedule-based digital representation of the public transport network, 

whereas Prato et al. (2014) and Rasmussen et al. (2014cd) utilise the road network of the LTM. 

Furthermore, Rasmussen et al. (2014cd) also use the zone-structure and demand matrixes 

developed and estimated for the LTM.  

A7.1.1 RASMUSSEN ET AL. (2014A) 

The public transport network used in the LTM is timetable-based and covers all public 

transport (including ferries, but excluding air transport) in Denmark as well as the relevant 

international lines in the surrounding countries. The extent of the network can be seen in 

Figure 1. The travel diary data used however only contain trips conducted within the Greater 

Copenhagen area. To facilitate faster computation times in the analysis, the geographical extent 

of the network was therefore reduced. The resulting network includes all public transport 

conducted within, in to, out from and across the Greater Copenhagen area. Figure 1 illustrates 

the extent of the full LTM network and the network used in the analysis, and Table 1 lists key 

characteristics of the two.  
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Figure 1 – LTM public transport network. Left: Full LTM network. Middle: Reduced LTM network used in 

Rasmussen et al. (2014a). Right: Reduced LTM network used in Rasmussen et al. (2014a), zoom 

Table 1 – Characteristics of the full LTM network and the reduced LTM network used in Rasmussen et al. (2014a) 

 Full network Greater Copenhagen area 

Lines 1,607 479 
Line variants 7,804 1,677 
Changes 5,566 560 
Stops 21,736 5,652 
Stop departures 1,258,729 635,027 

 

 The network is multi-modal and represents all public transport in the area. The departure-

frequency and stopping pattern of each line typically varies during the day. Each line can be 

classified into one of eight service types by its service level and characteristics. The eight 

service types and the corresponding typical headway between departures can be seen in Table 

2. 
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Table 2 – Frequency of public transport service types in the Greater Copenhagen area (Anderson, 2013) 

Service type Headway 

A-bus Approximately 3 min. in day hours 
E-bus Approximately 10 min. in peak hours 
Bus 10-60 min. 
S-train 10 min. 
Metro 2-4 min. in day hours, 6-8 min outside day hours 
Regional and IC-train 20-120 min. (some lines only one departure per day) 
Local train 30 min. 
Harbour bus 30 min. 

 

A7.1.2 PRATO ET AL. (2014) 

The LTM road network is used in Prato et al. (2014) and this consists of a total of 35,251 

possibly bidirectional links. The extent of the network can be seen in Figure 2. The 

observations used in the analysis are however concentrated primarily in the eastern part of 

Denmark (see section A7.2.2.1).  

Figure 2 – LTM road network (including ferries). Left: Zoom Denmark, Right: Zoom full network 
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 The primary focus of the paper is the investigation of the value of different travel time 

components (travel time reliability, free-flow and congested travel time). The analysis however 

also evaluates whether the number of turns (distinguishing between right and left turns) 

influences the route choice of travellers. The ‘standard’ LTM network however does not 

contain information about turning movements between links, and this attribute thus had to be 

identified as a part of the study. The PhD study developed a script for the identification of this 

attribute, and this has subsequently been used in various other studies at DTU Transport (e.g., 

Sølvason, 2012). Using ArcGIS modules, the script iterates through links and identifies angles 

between connected link-pairs in the network. These angles are used to identify turning 

movements between links (straight, right, left), and this information can be accumulated to 

identify the number of right and left turns of a given route. A right/left turn is identified if the 

change in direction is greater than ±50 degrees. Note that this method only identifies turns 

when these happen at link ends (intersection), and not if the direction changes rapidly on a link 

(e.g. winding road). Figure 3 and Table 3 shows an example of the identification the number of 

right and left turns. The trip traverses 12 links and makes two left turns and one right turn at 

intersections (see Figure 3). 
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Figure 3 – Each link used on the route is highlighted by a unique colour and is labelled by the associated linkID. 

The trip traverses 12 links and makes two left turns and one right turn at intersections between links (see 

Table 3) 

Table 3 – Example of determination of turns at link ends. The table is associated to Figure 3 

Route from linkID to linkID Angle Right turn Left turn 

1 31112 30647 -84.7 0 1 
1 30647 30648 -5.7 0 0 
1 30648 30649 -8.0 0 0 
1 30649 30650 -5.4 0 0 
1 30650 30175 -5.5 0 0 
1 30175 30184 -15.3 0 0 
1 30184 31263 -79.5 0 1 
1 31263 31264 -11.8 0 0 
1 31264 31265 -2.9 0 0 
1 31265 31267 5.3 0 0 
1 31267 31266 75.9 1 0 

Sum 1 2 
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A7.1.3 RASMUSSEN ET AL. (2014CD) 

The study applied the solution algorithms proposed in Rasmussen et al. (2014cd) to a road 

network covering the eastern part of Denmark (Zealand). This area has approximately 2.5 

million inhabitants, and the network used consists of 12,451 possibly bidirectional links. This 

network is a geographically limited subnetwork of the network used in the LTM (see Figure 4). 

 
Figure 4 – Case-study network Rasmussen et al. (2014cd). Zealand area 

 The demand matrices used was also developed for the LTM. This is a zone-based system 

covering all of Denmark and the most important international destinations/origins. The study 

area are however smaller than this, and there is therefore the need to adapt the ‘standard’ LTM 

matrices. Limiting the matrices to contain only the relations with both origin and destination 
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within the Zealand area (389 of a total of 907 zone centroids) would cause an unrealistic 

representation of congestion; congestion in the network is affected by e.g. trucks passing 

Zealand from Jutland to Sweden using the motorways within the study area. In order to try to 

capture this, port-zones were added to the case-study network on the locations where a link 

crosses the border of the case-study area. A total of 12 port-zones were added, and demand 

into/out of these represent (i) traffic going to/from a zone within the study area, and (ii) traffic 

crossing the study area. The total demand into/out and across the case-study area could be 

obtained from the original LTM zones. This however had to be split in a realistic manner 

between the port-zones. Imagine e.g. a trip from Northern Zealand to Germany – in this case 

some would possibly choose the route across the Great Belt Bridge and others would choose 

the route using the ferry to Germany, and the split between these should be realistic. In order to 

compute the split in a realistic manner, a full LTM assignment was conducted using the link-

based solution algorithm used in the LTM (Rich et al., 2010). Filters were used, which allowed 

the identification of the origin and the destination of all traffic passing the ‘port-zone’ links. 

This allowed a consistent aggregation of the demand to the port-zones.  

 The study adopted the connecters of the LTM network within the case-study area, 

whereas the port-zones were connected to the network link crossing the border of the study 

area.  

A7.2 REVEALED PREFERENCE DATA 

A7.2.1 PUBLIC TRANSPORT ROUTE CHOICE TRAVEL SURVEY 

The data on route choice of public transport users stem from the Danish Travel survey (TU). 

The TU is an on-going data collected among a representative sample of the Danish population. 

The survey collects travel diaries of trips conducted on the day before the interview as well as 

corresponding respondent and household socio-demographic data (income, gender, age etc.) 

(Christiansen, 2012). Since 2009, the TU has also collected detailed information on the trips 

conducted by public transport (see Anderson (2010) for more details). This extension of the TU 

was developed with the aim to be detailed enough to allow realistic and disaggregate 

representation on a digital version of the network, while still being easy to fill in by the 

respondents. Many observations have been collected due to the affiliation with the traditional 
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TU survey, and new data are continuously being collected. Information about addresses and 

purposes at start points, change points and end points of each trip as well as detailed 

information about the modes used en route are collected: 

 Walk, bike, car, airplane, etc. 

o Length and travel time 

 Bus 

o Waiting time, bus line, length and travel time 

 Suburban train (S-train) 

o Waiting time, boarding station, S-train line, alighting station, length and travel time 

 Train, Metro 

o Waiting time, boarding station, alighting station, length and travel time 

 Figure 5 shows an example of the data collected for one trip consisting of 7 trip parts. 

 
Figure 5 – Example of description of trip, public transport route choice survey (Anderson and Rasmussen, 2010) 

 The collected data had to be map matched to the network used for the choice set 

generation in Rasmussen et al. (2014a). A method to conduct this map matching was 
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developed in Rasmussen (2010), and this has been used to map match the data used in 

Rasmussen et al. (2014a). The method is complex by using advanced mechanisms to e.g. 

determine the location of boarding and alighting when doing bus trips etc. The method will not 

be described in detail here, but refer to Anderson and Rasmussen (2010) for a description in 

English.  

A7.2.2 GPS DATA 

The analysis in Prato et al. (2014) and Rasmussen et al. (2014d) utilise information collected 

by GPS units. The dataset consists of data from two data sources, both collected by DTU 

Transport. All data have been collected in 2011 and with a logging interval of 1-second. One 

part of the dataset was collected by in-vehicle units installed in vehicles of employees of the 

Municipality of Copenhagen. The other part of the dataset was collected as part of the ACTUM 

project. The PhD study developed the setup and handled various practicalities associated to the 

ACTUM data collection. The data was collected as individual-based rather than vehicle-based, 

among members of 50 families living in the Greater Copenhagen area. The analyses conducted 

in the two papers focus on data associated to car trips, and the individual-based data has thus 

been thoroughly analysed to identify trips, trip legs and the most probable mode of transport. 

Trips using other modes of transport than car has been removed from the dataset, see more in 

Rasmussen et al. (2014b). The data collected by in-vehicle mounted units were cleaned by 

assuming that a new trip starts after a long pause between logs (the GPS-unit turns off if the car 

is stationary for a while or if the ignition of the car is turned off).  

 The dataset consisted of at total of 56.3·106 GPS logs. A part of this was ‘scatter’ 

observations, which may arise due to numerous different reasons. One possibility could be that 

scatter logs may have been generated by travellers wearing the GPS-unit when moving around 

within their house (relevant only for the individual-based survey). Another possibility could be 

that the built-in motion-sensor (which reacts to vibrations) may have caused the units to 

erroneously turn on when the car was stationary, e.g. due to vibration caused by a passing truck 

(only relevant for vehicle-based survey). Additional possible reasons for generation of scatter 

surely exist. However, most scatter observations were removed from the datasets by requiring 

that a trip should consist of more than 60 observations. Applying this rule to the vehicle-based 
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dataset and the rules explained in Rasmussen et al. (2014b) to the individual-based dataset 

results in the identification of a total of 46,000 GPS trips.  

 After the initial removal of scatter observations, the next step was to map match the 

46,000 GPS trips. However, before this, the trips which started and/or ended outside the study 

area were removed from the dataset (Prato et al. (2014) used Denmark as the study area, 

whereas it was the Zealand Area for Rasmussen et al. (2014d)). The map matching was done 

using a software-implementation of the algorithm presented by Nielsen and Jørgensen (2004). 

Rather than adopting e.g. a closest link approach, the algorithm utilises a branch and bound 

approach to obtain coherent and correctly map matched routes. The algorithm will not be 

presented in detail here, refer to Nielsen and Jørgensen (2004). Among the output of the map 

matching software is a table consisting of one row for each link that the GPS trace has been 

matched to. Each row is associated with several attributes such as e.g. the time at which the 

vehicle entered the link. ‘Matched’ is another attribute, which takes the value -1, 0 or 1. 

‘Matched’=1 indicated that actual GPS logs have been associated with the link, whereas 

‘matched’=0 indicates that the link is associated to the path as part of the shortest path between 

links where points have been associated to (i.e. having ‘matched’=1). This e.g. arises when the 

traveller has been driving, for sections of the trip, on small local roads not represented in the 

somewhat aggregate LTM network. An example of such a trip can be seen in Figure 7. Figure 

6 illustrates an example of a trip where the whole route has been successfully map matched 

(i.e. ‘matched’=1 for all links on the route). 

 A row with ‘matched’=-1 does not have an associated linkID, as this indicates a section 

where no GPS points can be associated and no shortest path between two adjacent used links 

(i.e. having ‘matched’=1) can be found. This can e.g. happen as a consequence of an 

unconnected network. All traces containing a part with ‘matched’=-1 is initially removed from 

the dataset.  
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Figure 6 – Illustration of GPS trace and matched route Figure 7 – Illustration of GPS trace and matched route. 

Network aggregation causes wrong matching on 

section 

A7.2.2.1 Prato et al. (2014) 

The paper performed a two-part utilisation of the GPS data, each part setting different criteria 

for the ‘successfulness’ of the map matching; the estimation of link travel time reliability used 

the travel times on link level, and did not require the whole path to be matched fully. This part 

of the analysis therefore considered all links to which data have been matched with 

‘matched’=1 (but did not require all links of paths from which a link is used to be 

‘matched’=1). A subset of the dataset was also used for the choice set generation and model 

estimation. This part of the analysis used the map matched routes on ‘path level’, and did thus 

require for the whole paths to be correctly represented to allow consistent comparisons to 

generated routes. Consequently, only observations for which the path only consists of links 

with ‘matched’=1 were included in this part of the analysis. 



 

 

310 

 The paper splits the day into the ten time periods also used in the LTM. Table 4 lists 

these, along with the distribution of the observations used for the choice set generation. Note 

that the model estimation was based on fewer observations, as some observations were 

removed because only one route was generated in the choice set generation. 

Table 4 – Definition of time periods and distribution of two datasets to be joined 

Time period Time span Trips Municipality of Copenhagen Trips ACTUM 

1 21-05 927 20 

2 05-06 26 3 

3 06-07 187 13 

4 07-08 745 67 

5 08-09 1,137 60 

6 09-15 6,691 137 

7 15-16 1,652 48 

8 16-17 1,587 65 

9 17-18 1,425 52 

10 18-21 2,184 89 
  

 The travel time reliability on each link (for each direction and time period) was identified 

for links with more than 10 observations (for the corresponding direction and time period). The 

travel time reliability was defined as the difference between the 90th and the 50th percentiles of 

the travel time distribution. The travel time distribution was estimated using SAS, identifying 

the mean value μa and variance 2
a  of the travel time on link a. From these parameters, the 90th 

percentile of the travel time distribution (TT90,a) could be found using the following (formula to 

determine confidence interval): 

 2 2
90, 90/2 1.645a a a a aTT t           (A7.1) 

 For links where there were less than 10 observations, an ‘average’ travel time reliability 

was used, dependent on location, link type and congestion level (on the computation of this, 

see Appendix 8).   
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A7.2.2.2 Rasmussen et al. (2014d) 

Rasmussen et al. (2014d) used map matched routes on ‘path level’. The whole path should be 

correctly represented to allow consistent comparisons to the corresponding routes generated. 

Consequently, only paths/observations for which all links had the attribute ‘matched’=1 were 

included in the GPS-dataset used in Rasmussen et al. (2014d). Overall, three criteria were 

specified for the exclusion of observations; (i) the trip was less than 1 km long, (ii) the trip 

started and/or ended outside the study area, and (iii) one or several parts of the GPS trip could 

not be fully matched by GPS observations. If one of these criteria were fulfilled, the 

observation was removed from the resulting dataset. This induced the dataset to include a total 

of 16,618 map matched GPS traces, which is considerably less than the approximately 46,000 

trips in the full dataset. Several of the trip characteristics varied considerably across 

observations, and the remainder of this section illustrates the spatial and temporal distribution 

as well as the distribution of trip lengths. 

 The spatial distribution of the observed paths is illustrated in Figure 8. 

 
Figure 8 – Network coverage, observation count. Left: Zoom case study area, Right: Zoom Greater 

Copenhagen area 



 

 

312 

 As can be seen, the trips covered most parts of the study area. There were observations in 

urban as well as rural areas, however with most trips concentrated in the Greater Copenhagen 

area. 

 The distribution of the length of the observed routes is illustrated in Figure 9. Most trips 

were less than 15 kilometres long. This can partly be explained by many of the trips being 

performed within the Greater Copenhagen area, and partly by the trip identification algorithm 

which in some cases split trips wrongly, e.g. when long waiting times occur at intersections 

(Rasmussen et al. (2014b)). However, we did expect an overrepresentation of short trips, as 

trips which start and/or end outside the study area were removed from the dataset. 

 
Figure 9 – Number of observations as function of trip length 

 The temporal distribution of the observed trip legs is reported in Figure 10. As can be 

seen, most trips were conducted within the time span from 06 to 23, whereas only a few trips 

were conducted during night. The demand peaked during afternoon peak hours and partly 

during morning peak hours, but also many observations were obtained between these two 

peaks. One would expect the two peak periods to be more ‘distinct’, with a larger drop in trips 

in the period between these (as reported in the Danish National Travel Survey, Christiansen 

(2012)). However, many of the vehicles equipped with the GPS units were not only used for 

private transportation, but also for business purposes such as e.g. home care personnel 

travelling between resident houses. These trips are typically conducted within working-hours, 
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and may explain the fairly large share of trips being conducted between peak-hours. This might 

also partly explain why the dataset contains a large share of short trips.  

 
Figure 10 – Number of observations as function of time-of-day 
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APPENDIX 8: PRATO ET AL. (2014) DATA PREPARATION 

This appendix supplements the description in Appendix 7. Section A8.1 sets of by giving a 

description of how the travel time components were determined. The section also provides 

details about the computation of the travel time reliability when a few or no observations were 

available. Section A8.2 provides some details about the choice set generation method and the 

generated choice sets. The section also gives a disaggregate example comparing the choice set 

generated to a corresponding observed path.  

A8.1 LINK TRAVEL TIMES AND LINK TRAVEL TIME RELIABILITY 

The model estimation included various variables, including route free-flow travel time, route 

congested travel time and route travel time reliability. The route free-flow travel time was 

obtained as the sum of the free-flow travel time on the links used by the route. The route 

congested travel time was obtained as the sum of the difference between the average link travel 

time and the free-flow travel time on the links used by the route. The route travel time 

reliability was obtained as the sum of link travel time reliability on links used by the route. The 

travel time reliability was defined as the difference between the 90th and the 50th percentile of 

the travel time distribution (Appendix 7). 

 The average link travel time was defined as the modelled average speed. This speed was 

obtained from an assignment of the LTM demand matrices (split in the 10 time periods listed 

in Table 4 of Appendix 7) onto the network. Each link was thus associated with 10 different 

average travel times – one for each time period. The assignment model was the doubly 

stochastic link-based mixed probit assignment model applied in the LTM, and the assignment 

was assumed to give a realistic representation of the average congestion on the network links. 

 The link travel time reliability was computed using the available GPS data. The observed 

link travel time reliability per direction and time period was calculated at disaggregate level 

where possible, as explained in Appendix 7. However, not all network links had 10 or more 

observations per direction in each time period. The travel time reliability was computed in the 

following manner for cases where a link with less than 10 observations had one or more 

adjacent links with 10 or more observations (for the same time period and direction): 
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 90, 90,
a

a k
k

l
TT TT

l
   

where 90,aTT  and al  are the travel time reliability and length on link a (with less than 10 

observations), whereas 90,kTT  and kl  are the travel time reliability and length on link k 

(adjacent link with 10 or more observations). 

 If a link and none of its adjacent links had 10 or more observations, then the travel time 

reliability were determined by assuming that the reliability on the links depend on link type and 

congestion level. Moreover, a congestion level was defined on nearby links with 10 or more 

observations, and an average travel time reliability per length was then computed for each 

combination of link type and congestion level. This average travel time reliability per length 

was then used to calculate the link travel time reliability on the remaining uncovered links. The 

congestion level was specified using the relative speed (Vrel), defined as the ratio between the 

congested (modelled) speed and the free-flow speed. Three congestion levels were defined; 1: 

Vrel ≤ 0.45, 2: 0.45< Vrel ≤ 0.85, 3: Vrel >0.85. This definition is based on Brems and Nielsen 

(2012). 

A8.2 CHOICE SET GENERATION AND CHOICE SET CHARACTERISTICS 

To facilitate the model estimation, corresponding choice sets has to be generated for each of 

the observed routes. The analysis applied a doubly stochastic choice set generation method 

based on simulation. Rasmussen et al. (2014a) used the same approach for choice set 

generation in a public transport network. For each observation, 100 corresponding routes were 

generated by performing a shortest path search under consideration of preferences drawn for 

the parameters and simulated link impedances. Some of the routes generated were non-unique, 

and Figure 1 shows the average number of unique routes generated as a function of the number 

of routes generated. 
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Figure 1 – Average number of unique routes in choice sets as function of iteration number (number of routes 

generated) 

 It is important that the choice sets generated contain all relevant alternatives (including 

the observed route) while leaving out non-sensible routes (as discussed in e.g. Rasmussen et al. 

(2014d)). Using a 90% overlap threshold, Figure 2 shows the coverage (share of observations 

for which the observed route is represented in the choice set) as a function of the number of 

routes generated. Figure 1 in Prato et al. (2014) shows the relation between the coverage 

obtained at iteration 100 and the overlap threshold.  
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Figure 2 – Coverage as function of iteration number, 90% overlap threshold 

 The remainder of this section is dedicated to an example. The example illustrates the 

unique alternatives generated for one corresponding observed path and lists attributes of these. 

A total of 24 unique routes were generated within the 100 iterations. Figure 3 illustrates the 

observed route as well as the links used by one or several of the generated routes.  
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Figure 3 – Left: Observed route. Right: links used by generated routes 
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 Various attributes of the 24 generated routes are listed in Table 1.  

Table 1 – Free-flow travel time, congested travel time, length, reliability and overlap with observed route. 24 

generated paths 

Alternative Iteration 
Free-flow 
travel time 

[sec] 

Total travel 
time [sec] 

Length 
[km] 

Common 
length 
[km] 

Overlap [-] 
Reliability 

[sec] 

1 1 630.1 641.7 16.5 15.4 0.94 147.5

2 2 962.5 979.7 19.3 5.9 0.36 159.6

3 3 621.6 633.3 16.4 16.4 1.00 151.2

4 4 694.9 707.6 17.8 15.7 0.96 140.4

5 5 711.9 727.2 17.9 15.4 0.94 155.0

6 6 635.4 647.3 16.7 16.0 0.97 151.3

7 8 825.3 837.2 20.7 11.9 0.72 170.3

8 13 710.3 728.4 17.9 15.1 0.92 156.4

9 15 743.5 757.7 17.1 12.7 0.77 100.0

10 20 643.8 655.8 16.7 15.0 0.91 147.5

11 23 695.0 707.7 17.4 15.3 0.93 153.8

12 25 733.0 746.1 20.1 14.1 0.86 116.9

13 29 706.3 717.9 17.8 15.0 0.91 129.7

14 30 951.1 970.6 21.4 13.9 0.85 199.7

15 31 708.7 721.6 18.0 15.3 0.93 140.4

16 38 681.2 693.7 17.2 15.7 0.95 153.8

17 40 920.4 946.2 19.4 9.8 0.59 168.1

18 41 760.8 774.4 20.2 13.3 0.81 111.9

19 46 781.7 796.0 19.2 14.4 0.88 113.2

20 50 689.7 702.1 17.2 14.6 0.89 150.1

21 58 732.2 747.4 17.1 13.5 0.82 113.5

22 62 740.6 755.9 17.1 12.5 0.76 108.4

23 84 714.8 726.3 17.8 13.9 0.85 125.3

24 85 879.0 896.5 18.6 6.4 0.39 176.4
  

 

 Figure 4 illustrates the total travel time as well as the travel time reliability of the 24 
routes. 
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Figure 4 – Total travel time and reliability, 24 alternatives 

 

 Figure 5 illustrates the 90 % confidence interval for the total travel time. 

 
Figure 5 – 90% confidence interval, total travel time 
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 Alternative 3 is the chosen alternative. This has the shortest total travel time, and also a 

reasonably low reliability-value (indicating high reliability in the travel time). Other 

alternatives with lower reliability-value are available (e.g. alternative 9), but these also have 

longer travel times – apparently the lower ‘risk’ of delay is not worth the longer travel time. By 

visual inspection it was found that a certain stretch in the network contributes very much to the 

variation (reliability). Alternatives which avoids this stretch (e.g. alternative 9, 18 and 19) has a 

lot less variability. The stretch is the northern part of Ring 3 (highlighted by red in Figure 6), 

which in general is known to very unreliable.  

 
Figure 6 – Stretch of Ring 3 with high variability of travel time (highlighted in red) 
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